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Problem 1 (Linear regression and Regularization) (10 points)

1. Analyze, using linear regression, the data from the following table.

X1 2 2.3 2.4 2.6 2.8 3

Y 14 14.6 14.8 15.2 15.6 16

Recall that linear regression takes the form Y = β0 + β1X1, but that it is often

convenient to formulate it as Xβ = Y with β = [β0 β1]
⊤ and X = [1 X1].

(a) Estimate the coe�cients β0 and β1 using the following result.

(
XT X

)−1
=

[
9.93 −3.88
−3.88 1.54

]
.

Explain and justify each step you take. (2 points)

(b) Based on the value of β1: What can you say of the relationship between X1 and

Y ? (1 point)

(c) If we know that the data was generated as Y = β1X1+β0+ϵ, with E[ϵ] = 0 and
V ar(ϵ) = 0.5, can you tell, 95%-con�dently, that the trend given in (b) holds?

Why? (2 points)

2. Assume that we have a one-dimensional dataset for which we perform ridge regres-

sion, where we �x β0 = 0. That is, we solve the following optimization problem.

min
β1

N∑
n=1

(yn − xnβ1)
2 + λβ2

1 .

(a) Derive, step by step, a closed-form solution for β1. Make sure that the obtained

expression is a minimizer of the optimization problem. (3 points)

(b) Intuitively, what e�ect does λ have on the bias of the estimate of β1? And on

its variance? (2 points)
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Solution.

1. We have that X ∈ R
n×2, β ∈ R

2×1. In matrix form: Y = Xβ = 1β0 + Xβ1 with

β = [β0 β1]
⊤ and X = [1 X1].

(a) We can easily check that rank(X) = 2, and thus it is left-invertible. That is,

there exists a X+ ∈ R
2×n such that X+X = I2. This is the Moore-Penrose

pseudo-inverse and can be written as X+ = (X⊤X)−1X⊤.

Therefore, we can estimate β by simply solving the linear system in the matrix

form as

XTY = X+Xβ

using the given approximation for (X⊤X)−1. In particular, we have the follow-

ing.

β = (X⊤X)−1X⊤Y

= (X⊤X)−1(X⊤Y)

=

[
9.93 −3.88
−3.88 1.54

] [
90.2
228.3

]
=

[
9.882
1.606

]
So we have that β0 = 9.882 and β1 = 1.606.

(b) The value of β1 is approximately 1.606, which means that there is a positive

correlation between X1 and Y . That is, the bigger X1 is, the bigger Y becomes.

Furthermore, β1 = 1.606 suggests that with an increase of 1 unit in X1, Y
increases by 1.606 units on average.

(c) In order to know the value of β1 with a con�dence of 95%, we need to compute

the con�dence interval of the parameter. This interval can be written as [β1 −
2 · SE(β1), β1 + 2 · SE(β1)], where

SE(β1)
2 =

V ar(ϵ)∑N
n=1(xn − x)2

as mentioned in slides. Since the noise has V ar(ϵ) = 0.5, we have that SE(β1) ≈
0.87, and thus the interval is approximately [−0.15, 3.36]. Therefore, we cannot
ensure with high con�dence that the positive correlation between X1 and Y
holds, since the interval [−0.15, 3.36] has non-positive values.

In other words, if we draw 100 datasets from the model as in the problem, we

are not guaranteed to acquire β1 > 0 in at-least 95% of the datasets.

2. (a) We want to solve

min
β1

L = min
β1

N∑
n=1

(yn − xnβ1)
2 + λβ2

1 .

We start by di�erentiating w.r.t β1,

∂β1L = ∂β1

(
N∑

n=1

[
y2n + x2nβ

2
1 − 2ynxnβ1

]
+ λβ2

1

)
=
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= 2
N∑

n=1

(
x2nβ1 − ynxn

)
+ 2λβ1.

Then we set the derivative to 0 and solve for β1,

1

2
∂β1L =

N∑
n=1

(
x2nβ1 − ynxn

)
+ λβ1 = 0(

N∑
n=1

x2n + λ

)
β1 =

N∑
n=1

ynxn

β1 =

∑N
n=1 ynxn∑N

n=1 x
2
n + λ

=
⟨Y,X1⟩

⟨X1, X1⟩+ λ
.

We need to make sure that this expression is a minimizer.

� Option 1. Take the second derivative and check that it is positive.

∂2
β1
L = 2∂β1

([
N∑

n=1

x2n + λ

]
β1

)
= 2

N∑
n=1

x2n + 2λ > 0

� Option 2. L is a quadratic function w.r.t β1, and its �rst coe�cient is∑N
n=1 x

2
n + λ > 0, thus it opens upwards (convex function).

(b) Increasing the regularization strength λ increases the bias, and decreases the

variance, of β1, by preferring the estimated β1 being closer to 0. As a result,

data has less in�uence on the value of β1. In other words, the higher the λ value,

the less �uctuation of the estimated β1 we observe between randomly generated

datasets. On the other hand, when we decrease the regularization strength λ,
we e�ectively decrease the bias but increase the variance of β1.
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Problem 2 (Non-Linear regression and errors) (10 points)

1. We have been requested to build a model that can properly model some complex

data. To this end, we have decided to use polynomial regression.

(a) Describe in your own words the main idea behind polynomial regression. What is

its main advantage over linear regression? How can we estimate its parameters? (2 points)

(b) Given the cross-validation error as a function of the degree of the polynomial in

the �gure below (mean in yellow, standard deviation in blue): Which polynomial

degree would you use? Justify your answer. (1 point)

1 2 3 4 5 6 7 8
Degree of Polynomial

0.6

0.8

1.0

1.2

1.4

1.6

1.8

CV
 E

rro
r
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2. We want to use a tree-based approach to learn to predict a target (Y ) from a predictor

(X) such as the one shown in the image below. For this task, we consider a simple

regression tree, where the tree is created following the greedy recursive binary splitting

algorithm seen in the lectures. Recall that, at each step, the algorithm chooses the

predictor Xj and cut point s, creating two new regions R1(j, s) = {X|Xj < s} and

R2(j, s) = {X|Xj ≥ s} solving

min
j,s

∑
i:xi∈R1(j,s)

(yi − ŷR1)
2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)
2, (2.1)

where ŷRk
denotes the mean response for the training observations in Rk(j, s).

(a) Is such a tree a good model for the data shown below? Why (not)? (2 points)

(b) How would you reduce the training error to 0? And, in contrast, how would

you avoid this from happening? Why would you be interested in avoiding zero

training error? (2 points)

We decide to slightly change our approach and use, instead, a Linear Model Tree.

This model di�ers from a standard regression tree in that ŷRk
is replaced (in Eq. 2.1)

by the prediction of a linear model �tted using the data from that region, that is,

ŷRk
is replaced by ŷi,Rk

= xiaRk
+ bRk

.

(c) Is this a better model for our data? Why (not)? (1 point)

(d) Explain the steps to predict the response for a new data point. (2 points)
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Solution.

1. (a) � The main idea behind polynomial regression is to include higher order pow-

ers Xn
i of the predictors Xi to predict a target Y . The main advantage of

using polynomial regression over linear regression is that we can model

non-linear relationships between the predictors Xi and the target Y .

� We can estimate the parameters with the least squares, as in linear regres-

sion, by treating each higher order power Xn
i as a separate predictor. As a

simple illustrative example, assuming we have a single predictor X ∈ R for

which we wish to include a quadratic and a cubic polynomial to predict a

target Y , we estimate the parameters β = (β0, . . . , β3) ∈ R
4 as

min
β

E[(Y − β0 − β1X − β2X
2 − β3X

3)2].

(b) Polynomial with degree 4. While 8 has a slightly lower CV mean error, in this

case we prefer a simpler model as it has lower variance than degree 8 while

having roughly the similar CV mean error (and thus insigni�cant di�erence in

the bias between the two models). Following the one standard error rule, the

mean error of 4 degree model is within the standard deviation of 8 degree model.

Hence, we pick a polynomial of degree 4.

2. (a) � Positive answer. A regression tree will �t the data fairly well, the sudden

jumps of Y correspond well to splits with our tree. However, to model the

linear relationship within these regions a decision tree is suboptimal, but

will still produce decent predictions.

� Negative answer. A regression tree will not �t the data well. While it

can split the 4-distinguished regions well, it would fail at regressing within

each region. For each point in the region, it will always output the average

response, which can be quite o�.

(b) A decision tree can easily achieve zero training loss by splitting until each data

point has its own region. Achieving zero training error is a clear sign that we

over�tted our model and hence badly generalize to the true underlying relation

between input and target. To avoid over�tting, we can: i) prune a tree to a

smaller subtree with weakest link pruning; ii) set a threshold on the minimum

number of nodes per region (see ISLR).

(c) This is a better model for the given data, as the target Y seems to follow a linear

relationship with the predictor X (i.e. Y = mX for some m not necessarily

equating to 0) in each of the 4 groups. We can split the data in 4 regions and

within each region model the target Y using X via the linear least squares, to

exploit the linear relationship that the data exhibits.

(d) For an unseen data-point we �rst apply the trained decision tree until we reach

a leaf node. Recall that for each leaf node, we have a corresponding linear model

for predictions. Now, for the leaf node we arrive at for the unseen data-point,

we use the corresponding linear model to get our �nal prediction.
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Problem 3 (Linear classification) (10 points)

Our highly competent research team is dealing with a classi�cation problem in which they

want to predict the type of monkey from an NFT, out of K di�erent monkey classes.

However, the GPUs are broken, and their non-deep-learning skills are a bit rusty. As an

external advisor, they demand your expertise in linear classi�ers to make a decision on

which model to use.

Ian Badfellow seeks for perfection, and claims that they should use the ideal classi�er.

(a) Explain him in your own words what is the Bayes Classi�er, in which sense it is ideal,

and why we do not use it in practice so often. (2 points)

Jürgen Schüber, who complains that Bayes did not properly cite the work of Leibniz, claims

that we need some assumptions if we want to solve the problem. To this end, he kindly

reminds you that according to the Bayes's theorem for each class k we have

Pr(Y = k | X = x) =
πk · fk(x)∑K
l=1 πl · fl(x)

,

where fk(x) denotes the density function of X for the k-th class, Pr(X = x | Y = k).

(b) What is πk in the above expression? How would you estimate πk for a given dataset? (1 point)

(c) Assume that fk is provided. How can you use the Bayes' theorem to predict the class

label of a new data point? (1 point)

Unfortunately, fk is unknown in practice, and our experts really need your help to decide.

(d) Give the speci�c form of fk, and list the extra assumptions made for: (2 points)

i) Multinomial Logistic Regression.

ii) Linear Discriminant Analysis.

iii) Quadratic Discriminant Analysis.

(e) Assume K = 2. What is the odds ratio? And the discriminant function? How do they

relate? (2 points)

José Bengio is tired of talking and wants to step in. To keep funding coming, the team is

interested in knowing whether the monkey is valuable (Y = k) or not (Y ̸= k) (i.e., binary
classi�cation).

(f) In order to assess the best method, José wants to compute the ROC curve for all the

previous methods. What are the axes of the plot, and how do you generate the curve

(that is, which value would you change to generate the curve)? (2 points)
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Solution.

(a) Given a speci�c data-point x, the Bayes classi�er outputs the class argmaxk P (Y =
k | X = x). The classi�er is ideal in the sense that it predicts the most probable

class for the data-point x, and thus minimizes the misclassi�cation probability. In

practice, however, we cannot use the Bayes classi�er, as we do not know either the

desired conditional distribution P (Y | X), or the distributions P (X | Y ) and P (Y )
to compute the desired conditional distribution P (Y | X).

(b) πk is the prior probability P (Y = k) for observing an instance of class k. We can

approximate P (Y = k) counting the instances of class k in our data and dividing it

by the total number of instances in our data.

(c) Given that P (Y = k | X = x) ∝ πk · fk(x). We plug in our calculated πk and the

given fk(x) in to the equation of the Bayes Theorem, to compute the score for the

class k. Finally, by taking argmaxk πk · fk(x), we approximate the Bayes optimal

decision.

(d) Summary:

Method fk Assumptions

Logistic exp(β0 +
∑

p βpxp) Logits are linear in X.

LDA N (µk,Σ) Densities are Gaussian with shared variances.

QDA N (µk,Σk) Densities are Gaussian with exclusive variances.

(e) (Solution for general K) The odds ratio between class k and k′ is Pr(Y=k|X=x)
Pr(Y=k′|X=x) . The

discriminant function for the class k is δk = log Pr(Y = k|X = x).

Therefore, the odds ratio can be written as eδk/eδk′ .

(f) To generate the plot, we draw in the y-axis the true positive rate (TPR) (aka. sen-

sitivity), and the false positive rate (FPR) (aka. one minus the speci�city) in the

x-axis.

We generate the ROC curve by modifying the threshold α for which we choose the

positive class, that is, the rule for which we say that x is of the positive class if

Pr(Y = +|X = x) ≥ α.
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Problem 4 (Non-linear classification) (10 points)

1. The greedy algorithm seen in the course to build classi�cation trees does not allow

for partitions such as the one in Fig 2.

(a) Draw the partition produced by the decision tree shown in Fig 1. Is the partition

unique? Why? (2 points)

(b) Why cannot we build a tree that produces the partition in Fig. 2? How would

you change the model to allow such a partitioning? You do not have to explain

how the changed model is �tted. (2 points)

(c) Is the misclassi�cation error a good loss function to generate a tree? Why?

Justify your answer with an example. (2 points)

Fig 1. Decision tree for
exercise (a). Fig 2. Partition for exercise (b).

2. Recall that the Support Vector Machine is de�ned as follows:

maximize
M

β0,...,βp

ξ1,...,ξN

M

subject to ∥β∥ = 1

yif(xi) ≥ M(1− ξi) for i = 1, . . . , N

ξi ≥ 0,
N∑
i=1

ξi ≤ C

(d) How does an SVM di�er from a maximal margin classi�er? (1 point)

(e) Explain the purpose of the variable C in the optimization problem above. (1 point)

(f) How does the kernel trick help an SVM classify non-linearly related data? What

is the main advantage of this approach? (2 points)
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Solution.

1. (a) Yes, partitions are always unique. Proof by contradiction: assume there are two

di�erent partitions that both represent the same tree. Because they are di�erent,

we have two cases:

i. There is a coordinate tuple where the two partitions return di�erent values.

In this case, the same tree would give two outputs for the same input, which

is impossible because decision trees are deterministic.

ii. Both partitions return the same value for every input, but one has more

dividers than the other. Since we have as many dividers in the partition as

inner nodes in the tree, this cannot be the case either.

Thus, the two partitions cannot be di�erent if they represent the same decision

tree.

(b) Because the conditions on the internal nodes are too simple. In particular, each

internal node considers a single predictor. On the other hand, to create the par-

tition as in Fig. 2, we would need to combine conditions on multiple predictors,

e.g. by an AND operator.

(c) No, misclassi�cation is not a good loss function to generate a tree, as it is

relatively more insensitive to node inbalances, compared to other metrics e.g.

the Gini Index. An illustrative example is provided in the book �The Elements

of Statistical Learning�, section 9.2.3.

2. (d) The SVM allows for some points to lay in the margin or even on the wrong side

of the hyperplane, whereas the maximum margin classi�er does not allow such

a �exibility. In other words, in the maximum margin classi�er, we force all the

slack variables ξi = 0; as a result, the constraint yif(xi) ≥ M(1 − ξi) in the

SVM boils down to yif(xi) ≥ M .

(e) The variable C controls the misclassi�ed points. If C = 0, then we ensure all the

slack variables ξi = 0, resulting in a maximum margin classi�er as mentioned

above. However, when the data is not linearly separable, we allow for some

errors (i.e. points on the incorrect side of the hyperplane), but we penalize these

errors. Here, the C guarantees that we have at most C misclassi�ed points.

(f) Via the kernel trick, we transform the data through a nonlinear transformation

to an alternate feature space, such that the SVM can be applied to �nd a linear
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decision boundary in the transformed feature space. As a result, the SVM then

e�ectively capture non-linear relationships in the input space.

The main advantage of using the kernel trick is that it requires only dot products

of representations in the feature space, without explicitly requiring the repre-

sentations in the transformed feature space. And computing the former can be

signi�cantly faster than computing the latter if the transformed feature space

is very high dimensional.
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Problem 5 (Unsupervised learning) (10 points)

1. Given the following set of points:

x1 = (7, 0); x2 = (5,−3); x3 = (1, 6);
x4 = (6,−1); x5 = (5, 3); x6 = (2,−3);

Compute two full iterations of k-means clustering (Lloyd's algorithm) with initial

clusters µ1 = (−1, 2) and µ2 = (3, 5). Use d(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 as

distance. Make sure to write down the necessary distances, explain the steps you

follow, and to describe the resulting clusters (centroid and points) at the end of both

iterations. (3 points)

2. Draw the dendrogram for the following dataset, using single linkage hierarchical clus-

tering with the Manhattan distance, d(a, b) = |a1− b1|+ |a2− b2|. Make sure to indi-

cate the distances, the height at which each fusion occurs, as well as the observations

corresponding to each leaf in the dendrogram. (3 points)

Name X1 X2

A 5 2
B 3.5 1
C −3 2
D 2 4
E 7 −3
F 3 3.5

3. Suppose we have a dataset which has too many features, and thus we wish to perform

dimensionality reduction on the dataset by applying PCA:

(a) Does PCA perform feature selection? Why (not)? (2 points)

(b) Say we use PCA to reduce the data dimensionality to a single feature. Give two

di�erent ways we can interpret the resulting feature. (2 points)
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Figure 1: Illustration of K-Means algorithm. Crosses represent centroids of the clusters of

respective color. Arrows denote the update of cluster centroid after the iterations.

Solution.

1. Iteration 1. We �rst compute the distances between the datapoints xi and the

cluster centroids µ1 and µ2, which is as follows.

d(a,b) x1 x2 x3 x4 x5 x6

µ1 68 61 20 58 37 34

µ2 41 68 5 45 8 65

We now select, for each data point xi, a cluster j such that the euclidean distance

between the datapoint xi and the cluster centroid µj is minimized, giving us the

following cluster assignments.

Points x1 x2 x3 x4 x5 x6

Cluster Assignments 2 1 2 2 2 1

Finally, we update the means: µ1 = (3.5,−3), µ2 = (4.75, 2). Figure 1 (left) illustrates
the steps.

Iteration 2. We repeat the process as before, although now with updated means µ1

and µ2 from Iteration 1. Namely, we �rst compute the distances as
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d(a,b) x1 x2 x3 x4 x5 x6

µ1 21.2 2.6 87.2 10.2 28.2 2.2

µ2 9.1 25.1 30.1 10.6 1.1 32.6

This gives us the updated cluster assignments as

Points x1 x2 x3 x4 x5 x6

Cluster Assignments 2 1 2 1 2 1

Finally, we have the updated means as µ1 = (4.3,−2.3), µ2 = (4.3, 3). Figure 1

illustrates the 2nd iteration.

2. Dendrogram:

3. (a) No! We do not select features to keep and delete others. In PCA, we get the

principal components, which are in a sense new features computed from the old

ones. Feature selection would mean selecting some of the original features and

discarding others.

(b) The resulting feature is a linear combination of the already existing features,

such that the variance of this resulting feature is maximized. Alternatively, we

can also interpret the resulting feature such that the (sum of) euclidean distance

between the original data-points and the respective transformed data-points in

this feature space is minimized.
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