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Problem 1 (Lots of Data) (10 points)

1. We want to predict target Y given a single predictor X. We collected two datasets (10 pts)

from the same distribution, one of n = 10 samples, and a second of n = 1000 samples.

We �rst �t a simple linear regression model.

(a) What is a good approach to compare the least-squares estimate of β we get for (1 pt)

the one dataset to the least-squares estimate of β we get for the other dataset?
Explain in your own words.

(b) We use bagging to obtain a thousand estimates of the parameter β for each (1 pt)

dataset. We show the results in Fig. 1. Which of the two �gures corresponds to
the small dataset (n = 10) and which to the large (n = 1000) dataset? Explain
your choice.
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(a) Estimates for dataset A.
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(b) Estimates for dataset B.

Figure 1: Estimates of the linear coe�cient β for two datasets.

(c) We now consider polynomial regression with degree d. Compare the bias and (2 pts)

variance of a model with degree d = 3 to a model with degree d = 10.

(d) Explain how we can control the �exibility of

i. a spline regression model, and (1 pt)

ii. a regression tree. (1 pt)

(e) Will �tting a more �exible model on the large dataset (n = 1000) always achieve (2 pts)

a lower test error than �tting a less �exible model on the small dataset (n = 10)?
If yes, explain your reasoning; if no, explain what modi�cation we can make to
the learning procedure to address this aspect.

(f) To decide the �exibility (e.g., the degree d) of the above models, we consider
using k-fold cross validation or leave-one-out cross validation (LOOCV).

(a) Which do you recommend for the small, respectively the large dataset? (1 pt)

Why?

(b) Which do you recommend in general and why? (1 pt)
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Solution.

1. The uncertainty of the coe�cients depends on the sample size n.

(a) Two di�erent ways to compare the estimates for di�erent datasets are con�dence
intervals and bagging. For con�dence intervals, we have seen in the lecture that
the 95% con�dence interval for βi where i ∈ {0, 1} is given by[

β̂i − 2 · SE(β̂i), β̂i + 2 · SE(β̂i)
]

where SE2(β̂0)
2 = σ2

(
1
n + x̄2∑n

i=1(xi−x̄)2

)
and SE2(β̂1)

2 = σ2∑n
i=1(xi−x̄)2

. In par-

ticular, these con�dence intervals for the parameters generally become smaller
as n increases and if the β̂i for di�erent datasets have overlapping con�dence
intervals, their results are generally considered not to be signi�cantly di�erent.

For boosting, we resample data Xk, Y k from the original dataset X,Y and com-
pute β̂k for each of these datasets. We can then look at the empirical con�dence
intervals for β̂0 and β̂1 by sorting the β̂ki and looking at the 2.5% and 97.5%
quantiles, and again check whether the con�dence intervals for di�erent datasets
overlap.

(b) Smaller datasets will lead to large variance of estimates of β̂, whereas larger
datasets will lead to much smaller variance of estimates of β̂. In fact, in a
di�erence of n = 1000 to n = 10, we would expect roughly a

√
100× decrease

in the variance, which looks about right for the plots shown here.

(c) Compared to a polynomial regression model with d = 3, a model with d = 10
has many more free parameters and is therefore more �exible. The model with
d = 10 therefore has lower bias and higher variance than the model with d = 3.

(d) i. For a regression spline, we can change the number of knots or the degrees
of its local polynomials, both of which would change the number of free
parameters, d+K+1 (assuming d−1-times di�erentiability). Alternatively,
we could change the number of continuity/di�erentiability constraints at
each knot.

ii. For regression trees, we can change the depth of the tree, which constrains
its �exibility by allowing it to perform fewer splits and therefore containing
more data points per leaf node.

(e) No, even if n = 1000, if we try to �t an arbitrarily complex model we still
over�t. To avoid this issue, e.g., for polynomial regression, we can regularize the
parameters. For splines, we could do the same, or impose smoothness constraints
at the knots.

(f) Cross Validation approaches and diminished returns for larger n.

(a) For the smaller dataset LOOCV may be better, since using k-fold CV may
end up throwing away too much data so that the model cannot be trained
well enough. For the larger dataset, however, k-fold CV is de�nitely prefer-
able since the loss of some data is less impactful the more data we have,
but the improvement on the estimate of the generalization error of k-fold
CV due to less correlated datasets compared to LOOCV is signi�cant.
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(b) In general, there is a trade-o� in terms of bias and variance between K-fold
CV and LOOCV. When the goal is to estimate the generalization error
after our data containing n points has been observed, then both of them
overestimate the generalization error by using estimates based on fewer
than n points. Since LOOCV uses n-1 points while K-fold CV uses (K −
1)/K ·n points, the bias for LOOCV is generally lower than for K-fold CV.
However, the datasets used for training LOOCV have much larger overlap
and are therefore more correlated than the ones in K-fold CV, leading to
much larger variance for LOOCV. When the number of points n is large,
the bias of using, say, 5-fold CV is usually not very large since the amount
of information lost by losing 20% of the data is usually not very signi�cant.
Furthermore, using LOOCV requires us to �t the model n times, increasing
the computation load dramatically, while K-fold CV only increases it by a
constant factor K independent of n. This is another reason why K-fold CV
with some moderate K is often preferred.
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Problem 2 (Linear Regression) (10 points)

1. Determine if the below statements are true or false. For every false statement, either (3 pts)

provide a counter example or correct it by replacing a single term (noun or adjective).

(i) The Gauss-Markov theorem states there exists no estimator for the coe�cients
of the linear model that achieves lower variance than the least squares estimator.

(ii) We should use the t-test to determine if a set of more than one predictor is
signi�cantly correlated with the outcome.

(iii) Assume that we �t a linear model on a single predictor; if its coe�cient is 0
then the outcome must be statistically independent with this predictor.

(iv) Assume a dataset that comes from an underlying linear model y = βx+ε, where

ε is arbitrary noise. Then t = β̂

SE(β̂)
follows a student t distribution, where β̂ is

the least squares estimate of β and SE(β̂) its standard error.

2. One of our physicist friends is studying a phenomenon between a single predictor X
and a target variable Y that can be described as a linear model satisfying the least
squares assumptions. We have 50 datapoints shown on Fig 2.

(a) Explain which out of xa, xb, xc are outliers, which of these are high leverage (1 pt)

points, and which are both?

(b) Give a short explanation why our friend should be concerned about outliers, (1 pt)

respectively about high leverage points?

(c) Suppose we may remove one datapoint before we �t the least squares estimate. (1 pt)

Which out of xa, xb or xc would you remove? Why?
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Figure 2: A dateset with 50 datapoints, where three points are annotated as xa, xb, xc.
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3. Consider linear models with a single predictor.

(a) Give a counterexample to the following statement. (1 pt)

Heteroskedastic noise leads to higher prediction error than homoskedastic noise.

(b) When should we check for heteroskedasticity? How do we do so? (1 pt)

4. We are analyzing how sales are a�ected by advertising on three di�erent media. By
�tting a multiple linear regression model we get the following coe�cients.

intercept YouToob Bacefook Twutter

coe�cient 3.010 0.040 0.190 -0.010

Based on these results, co-worker A suggests that the company should stop advertis-
ing on Twutter as it hurts sales. Co-worker B suggests the opposite.

(a) Give a brief explanation or a counter example why colleague A might be wrong. (1 pt)

(b) Explain how we can test whether colleague B might be right. (1 pt)
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Solution.

1. All of these statements are false. The notes are not a required part of the answer.

(a) False.
The Gauss-Markov theorem refers only to the unbiased estimators. A simple
counter-example is an estimator which gives a constant estimate for the weights.
Its variance would therefore be zero, and its bias, of course, arbitrarily high.

(b) False.
We should replace the word `t-test' with `F-test'.

(c) False.
A zero coe�cient only implies that the predictor is uncorrelated with the out-
come, which is a weaker statement than statistical independence.

As a simple counter-example consider a dataset of a predictorX and an outcome
Y , represented below as points in R2.
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Although these are uncorrelated, i.e., E [XY ] = 0 (at least to the best of our
empirical evidence), they are not statistically independent.

(d) False.
We can correct this statement by replacing `arbitrary' noise with `Gaussian'
noise.

2. To answer this question it is helpful to quickly draw the model prediction line. The
regression line for the data in the lower end looks like the gray dashed line shown
below.
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(a) The samples xa and xb are high leverage points, because they lie far from the
mean of all predictors.
The samples xb and xc are outliers, because they lie far from the regression line.

(b) The outliers are samples whose outcome is far from the prediction of the model,
based on the rest of the predictors, and therefore pull the regression line away
from the correct estimate due to the quadratic term in the loss.

The high leverage points are samples whose predictors are far from the �bulk�
of the remaining predictors and have a higher capacity to a�ect the regression
line. They might or might not introduce errors depending on whether or not
they are also outliers.

(c) The problem arises from outliers, so we would have to choose between points
xc and xb. Based on our estimated regression line, however, both of these
points seem to have the same residual. Therefore, we would remove the point
xb, as it is not only an outlier, but also a high leverage point, and therefore
has a greater potential to a�ect the regression line compared to xc; in fact, the
leverage of outlier xc is almost zero.

3. (a) Generally, in linear models heteroskedasticity does not lead to worse accuracy
than homoskedastic noise of the same variance. One counter-example can easily
be constructed by starting with data with homoskedastic noise and lowering
the variance of it in one side while increasing it in the other, so that the overall
noise is similar.

(b) The issue with heteroskadasticity is that it changes the model assumptions to
the point where the statistical analysis becomes inaccurate, also in the case that
the noise is Gaussian; this includes, for instance, t-tests, con�dence intervals and
standardised residual estimates, among others.
We should therefore always test for heteroskedasticity whenever we use the linear
model for statistical analysis and not just prediction.
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An easy way to test for heteroskedasticity visually is through the residual plot.
For the above datasets this would look like below. Homoskedastic noise should
follow the same distribution for each sample, whereas heteroskedastic one look
like a funnel.

(c) Based on the course material, this question can admit more than one answers.
One could be the following.

i. You suspect that the quite small negative coe�cient appears solely because
of noise, whereas the true coe�cient should have been zero. This would
mean that the revenue is uncorrelated with the predictor for Twutter and
is therefore not harmful for advertising.

ii. We can test for the signi�cance of this coe�cient with a t-test. Your col-
league is only con�dently correct if this test manages to reject the hypothesis
that the respective coe�cient is zero.
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Problem 3 (Classification) (10 points)

1. Assign each of the following classi�cation methods to one dataset shown in Figure 3 (3 pts)

such that they achieve the best possible accuracy. Brie�y explain your choices.

(a) logistic regression

(b) linear discriminant analysis

(c) quadratic discriminant analysis

(d) nearest neighbours with k = 1

(a) Dataset A (b) Dataset B (c) Dataset C (d) Dataset D

Figure 3: Likelihood contour plots for four binary classi�cation datasets. Positive points in
red (+), negative points in blue (−).

2. Consider the following statement. Is it correct? Why (not)? (2 pts)

Logistic Regression is a linear model.

3. One of the most commonly used kernels in SVMs is the Gaussian RBF kernel (2 pts)

k(xi, xj) = exp(− ||xi−xj ||
2

2σ2 ). Suppose we have three points z1, z2 and x. Assume
σ = 1, z1 is close to x and ||z1 − x|| � σ, and z2 is far from x and ||z2 − x|| � σ.
Here the symbols � and � mean "much smaller" and "much greater" respectively.

What is the value of k(z1, x) and k(z2, x)? Choose one of the following. Explain why.

(i) k(z1, x) will be close to 1, and
k(z2, x) will be close to 0.

(ii) k(z1, x) will be close to 0, and
k(z2, x) will be close to 1.

(iii) k(z1, x) will be close to c1 such that c1 � 1, and
k(z2, x) will be close to c2 such that c2 � 0 and c1, c2 ∈ R.

(iv) k(z1, x) will be close to c1 such that c1 � 0, and
k(z2, x) will be close to c2 such that c2 � 1 and c1, c2 ∈ R.
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4. You are training a hard-margin SVM on the dataset shown in Fig. 4.

(a) Find the optimal weight vectorw and bias b. What is the equation corresponding (2 pts)

to the decision boundary?

(b) Circle the support vectors and draw the decision boundary. Note: Do not provide (1 pt)

your answer here, but rather on Fig. 1 on page 10 of the answer sheet.

Figure 4: Dataset of two positive (+) and two negative (−) datapoints.
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Solution.

1. We should make the following choices.

� Dataset A: linear discriminant analysis
The LDA method is optimal when the class likelihoods are Gaussian with the
same variance for both classes, as is clearly the case in this dataset.

� Dataset B: nearest neighbours with k = 1
This dataset is far from linearly separable, and we therefore need a method that
is �exible enough to adapt to the peculiarities of each class likelihood. The k-NN
method is such a case, and even more so when k = 1.

� Dataset C: logistic regression
Although this dataset is close to linearly separable, its likelihoods are far from
Gaussian and other methods cannot be used, or are sub optimal. Instead, logistic
regression makes no particular assumptions on the shape of the likelihoods, apart
from the linearity of the log-odds.

� Dataset D: quadratic discriminant analysis
The QDA method assumes the class likelihood to be the Gaussian with the
di�erent variance for both classes, as is clearly the case in this dataset.

2. Logistic regression is indeed a linear model, and more speci�cally belongs to the class
of generalised linear models; in these methods we model a derived quantity with a
linear model.

In the case of logistic regression we use a linear function to model the log odds, which
gives rise to the linear relationship

log odd(X) := log

(
P (Y = 1|X)

P (Y = 0|X)

)
= Xβ + β0 . (3.1)

3. By simple mathematical operations, we can see that the correct answer is (i).

4. � The SVMs try to maximise the margin between the two classes. Therefore,
the optimal decision boundary must be a diagonal line that crosses the point
(x1, x2) = (3, 4). It is perpendicular to the line beetween the support vectors
(4, 5) and (2, 3), hence it has slope m = −1. Thus the line equation is x2 − 4 =
−1(x1 − 3) which is x1 + x2 = 7. From this equation, we can deduce that the
weight vector has to be of the form (w1, w2) where w1 = w2. It also has to
satisfy the following equations:

2w1 + 3w2 + b = 1 and

4w1 + 5w2 + b = −1

Hence, w1 = w2 = −1/2 and b = 7/2.
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� The decision boundary and support vectors are as shown below.

5. RBF kernel generates a "bump" around the center x. For points z1 close to the center
of the bump, K(z1, x) will be close to 1, for points away from the center of the bump
K(z2, x) will be close to 0.
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Problem 4 (Model Selection) (10 points)

1. We have a dataset where we want to predict Y given four predictors, and consider a
simple linear regression model with coe�cients β.
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(a) Regularization method A.
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(b) Regularization method B.

Figure 5: Linear coe�cients β per predictor for varying regularization strength λ.

(a) Which of the plots in Fig. 5a, 5b corresponds to Ridge and which to Lasso? (2 pts)

Explain your reasoning.

(b) Assume that we know that Y is in�uenced by only few predictors. Which of the (2 pts)

two methods would you then prefer? Why?
Explain how you would interpret the plots in Fig. 5 in this case.

(c) Compare the behavior, in terms of bias and variance, of linear models with ridge (1 pt)

regularization strengths λ = 0.1, λ = 1, and λ = 10.

(d) Which approach can you use to select an appropriate tuning parameter λ? (1 pt)

Explain this approach in your own words.

2. Consider the following regression objective for n datapoints and p predictors, (2 pts)

β̂ = arg minβ

 n∑
i=1

(yi −
p∑
j=0

βjxij)
2

+ λ1||β||1 + λ2||β||22 .

Explain how this is di�erent from the linear regression objectives you have encoun-
tered in the lecture, and what behavior you expect for this model.

3. Finally, we consider standard regression splines (i.e. not smoothing splines). Give two (2 pts)

ways to constrain the �exibility of the model. Explain how this is similar or di�erent
to linear and polynomial regression.
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Solution.

1. Comparing Ridge and Lasso,

(a) Left: Lasso. This is because Lasso will make parameters equal to exactly zero
already for moderate amount of regularization.

Right: Ridge. This does not make parameters exactly zero.

(b) If only few parameters are truly important, then the feature selection performed
by Lasso would make it the obvious choice.

(c) The larger the regularization parameter, the lower the variance of the �t models
since regularization makes all model parameters closer to zero and therefore
closer to each other for di�erent datasets. In contrast, the bias is increased for
the same reason of model parameters being closer to zero and therefore being
unable to capture models requiring large parameter values.

(d) We can select the tuning parameter λ by using K-fold cross validation. Here,
we split the data into K di�erent batches and train K di�erent models with one
batch left out on the K − 1 remaining batches. By averaging the losses of the
di�erent models over their left out batches, we can estimate the generalization
error of the model.

We can use this to estimate the e�ect of λ on the generalization error, and use
whichever λ leads to the lowest estimate of the generalization error.

2. This adds a regularization term which is a combination of Ridge and Lasso regular-
ization and therefore should perform regularization intermediate between these two.
In particular, when λ1 � λ2 we expect the regularization to perform mostly like
Lasso, whereas for λ2 � λ1 we expect it to perform mostly like Ridge. This holds in
particular when one of the λi = 0.

3. There are (at least) three distinct ways of constraining the �exibility of a regression
spline. First, we can control the number of knots, K, which a�ects the �exibility by
introducing additional local models. This has no direct correspondence to linear or
polynomial regression, although the e�ect on the free parameter count of the model
is similar to a change in the degree d of a polynomial regression model.

Second, we can control the degree d of the local polynomials. This directly a�ects
the �exibility of the model at every point, and is similar to a change in the degree of
a polynomial regression model.

Third, we can change the continuity requirements at each knot. That is, instead of
requiring d − 1-times di�erentiability at each knot with degree d polynomials, we
could require c < d − 1-times di�erentiability. This does not really have any direct
correspondence to linear or polynomial regression models which are already in�nitely
di�erentiable. However, the e�ect on the free parameter count is again similar to a
change in the degree of a polynomial regression model.
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Problem 5 (All Those Parameters) (10 points)
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(b) Network with 2 hidden layers.

Figure 6: Two neural networks with 10 hidden neurons (bias neurons not shown).

1. Consider the neural networks in Figure 6.

(a) How many free parameters does the network in Fig. 6a have, if X and Y are (1 pts)

univariate, and biases are non-zero. Explain your reasoning.

(b) Explain which of the two networks is more expressive when using the sigmoid (2 pts)

activation function σ(t) = et

1+et .

2. Yunn LeCann says that deeper networks are better, and proposes to use a neural
network with 3 hidden layers and a total of 50 free parameters.

(a) How many knots (K) would we have to pick for a cubic spline to have 50 free (2 pts)

parameters? How many for a linear spline? Explain your reasoning.

(b) The linear spline, the cubic spline, and the neural network that Yunn LeCann (2 pts)

proposes all have 50 free parameters. Does this mean they will �t a given data
set equally well? If so, explain why. If not, give a counter example on which one
of them performs better than at least one of the other two models.

3. Let M1 and M2 be two model classes such that the ratio of number of free param- (1 pt)

eters FP(M2)
FP(M1) > C is very large. Is it possible for M1 to perform better in terms of

generalization than M2 even for arbitrarily large C? Why (not)?

4. We have two models that obtain exactly the same error on a held out test set. Give (2 pts)

three reasons why one model may nevertheless be preferable to the other and explain
your reasoning.
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Solution.

1. (a) For regression, the model depicted by the network in Fig. 6a can be written as

Y =W2h1 + b2

h1 = σ(W1x+ b1)

where W1 ∈ R10×1, b1 ∈ R10 and W2 ∈ R1×10, b2 ∈ R. That is, there are ten
parameters for W1 corresponding to edges from X to H, ten for W2 for the
edges H to Y , ten for the biases b1 of H and one parameter for the bias b2 of
Y . The network in Fig. 6a thus has 31 parameters total.

(b) The model in Fig. 6b is more expressive for two reasons. First, the addition of
another introduces another source of nonlinearity and therefore allows the model
to capture more highly nonlinear functions. Second, the model also contains
clearly more parameters, with the connections between the two hidden layers
already making up for 25 parameters, which combined with its eleven biases is
already larger than that of Fig. 6a.

2. (a) For 50 free parameters, we can use the formula that a spline of degree d with
K knots contains d+1+K free parameters. A spline of degree d with K knots
that is d− 1 times di�erentiable has

(d+ 1) · (K + 1)− d ·K = dK + d+K + 1− dK = d+K + 1

free parameters as we have seen both in the slides and in Assignment 4.

Thus, for the cubic spline we obtain 50 − 3 − 1 = 46 knots and for the linear
spline we obtain 50− 1− 1 = 48 knots.

(b) They do not. The simplest example is the noiseless relationship y = x3. Clearly,
this function would be �t by a cubic spline. However, since it is not piecewise
linear, the linear spline will not perform as well on this kind of data.

3. Yes this is possible, and we can use the same example from above. Even with K = 0
knots, the cubic spline will still �t the data perfectly, while the linear spline will not
�t the data perfectly for any �nite number of knots.

4. Three possible reasons for preferring one model over another might be: a) privacy,
because one model might leak more information about its data than another when
shared; b) fairness, because one model might be trained on sensitive attributes such
as race or gender; c) interpretability, because one model could be much more inter-
pretable than the other.
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