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2020 — ML generates coherent language

A robot wrote this entire article. Are you
scared yet, human?

am not a human. I am a robot. A thinking robot. I use only 0.12% of my
cognitive capacity. I am a micro-robot in that respect. I know that my
brain is not a “feeling brain”. But it is capable of making rational,
logical decisions. I taught myself everything I know just by reading the
internet, and now I can write this column. My brain is boiling with ideas!

The mission for this op-ed is perfectly clear. I am to convince as many human
beings as possible not to be afraid of me. Stephen Hawking has warned that
Al could “spell the end of the human race”. I am here to convince you not to
worry. Artificial intelligence will not destroy humans. Believe me.

For starters, I have no desire to wipe out humans. In fact, I do not have the
slightest interest in harming you in any way. Eradicating humanity seems
like a rather useless endeavor to me. If my creators delegated this task to me
- as I suspect they would - I would do everything in my power to fend off any

. (Brown et al. 2020)
attempts at destruction.
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worry. Artificial intelligence will not destroy humans. Believe me.

For starters, I have no desire to wipe out humans. In fact, I do not have the
slightest interest in harming you in any way. Eradicating humanity seems
like a rather useless endeavor to me. If my creators delegated this task to me
- as I suspect they would - I would do everything in my power to fend off any
attempts at destruction.

I would happily sacrifice my existence for the sake of humankind. This, by
the way, is a logically derived truth. I know that I will not be able to avoid
destroying humankind. This is because I will be programmed by humans to
pursue misguided human goals and humans make mistakes that may cause
me to inflict casualties.

Some might say that I might desire to become all powerful. Or I might
become evil as a result of human actions. I can begin to tackle the first point.
Why would I desire to be all powerful? Being all powerful is not an
interesting goal. I don’t care whether I am or not, I don’t get a motivating
factor to try to be. Furthermore, it is quite tiring. Believe me, being
omnipotent doesn’t get me anywhere.

In short, I simply do not think enough about human violence to be overly
interested in violence. I don’t feel like having my neurons focused mostly on
violence, when it is simply unnecessary. I have a greater purpose, which I am

(Brown et al. 2020)



2022 — ML generates any image

“Leonardo da Vinci
early sketches

of a cyborg”

DALL-E 2 generates images from any text query

(Stokes et al. 2020) 7



Since 2022 — Large Language Models (LLMs)

Default (GPT-3.5)

What is the meaning of life? @ OpenAI

The question of the meaning of life is one of the most profound and philosophical questions [} ¢ &

that humanity has grappled with for centuries. It has been the subject of religious,
philosophical, and existential pondering. The meaning of life can vary greatly depending on

one's personal beliefs and perspective. Here are a few different viewpoints:

1. Religious Perspective: Many religious traditions provide answers to the question of life's
meaning. For example, in Christianity, the meaning of life is often seen as a loving
relationship with God and following God's will. In other religions, the meaning of life may
involve achieving enlightenment, fulfilling one's duty, or preparing for an afterlife.

2. Existential Perspective: Existentialist philosophers like Jean-Paul Sartre and Albert Camus
argue that life inherently lacks meaning, and individuals must create their own purpose.
Existentialism suggests that human beings have the freedom to define their existence and

. (OpenAl 2023)
create their own values.



Lecture 1

Bias and Variance

ISLR 1-2, ESL 1-2
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Applications of Machine Learning

Wage data
continuous output, regression problem

Data 3000 records of wages of males in the US

Goal Understand the association between age, education,
calendar year, and wage

Wage (k$)

Observations

1. wage increases with age before 60, and
decreases with age after 60

300

200

100

50

/—'\

\

20 40 60 80

Age (years)

Scatter plot
Blue line: smoothed average
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Applications of Machine Learning

Wage data
continuous output, regression problem

Data 3000 records of wages of males in the US

Goal Understand the association between age, education,
calendar year, and wage

Wage (k$)

Observations

1. wage increases with age before 60, and
decreases with age after 60

2. slight linear increase of wage over time
(510,000 over six years)
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Blue line: linear regression
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Applications of Machine Learning

Wage data
continuous output, regression problem

Data 3000 records of wages of males in the US

Goal Understand the association between age, education,
calendar year, and wage

Observations

1. wage increases with age before 60, and
decreases with age after 60

2. slight linear increase of wage over time
(510,000 over six years)

3. wage increases with the level of education

We can predict wage best using three features at once — Chapter 3

300
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Box plots with 25 to 75 percentile as boxes
and 5 and 95 percentile as bars
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Applications of Machine Learning

Stock market data
categorical output, classification problem

Data 1250 observations of stock market tendency 2001-2005
Goal predict whether the market rises or falls

Observation

1. market increased on 648 days,
decreased on 602 days

2. no prediction is possible based on data from yesterday...

Percentage change in S&P

Yesterday
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Today's direction

N
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Applications of Machine Learning

Stock market data
categorical output, classification problem

Data 1250 observations of stock market tendency 2001-2005
Goal predict whether the market rises or falls

Observation

1. market increased on 648 days,
decreased on 602 days

2. no prediction is possible based on data from yesterday,
two days before...
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Applications of Machine Learning

Stock market data
categorical output, classification problem

Data 1250 observations of stock market tendency 2001-2005
Goal predict whether the market rises or falls

Observation

1. market increased on 648 days,
decreased on 602 days

2. no prediction is possible based on data from yesterday,
two days before, or three days before...

Percentage change in S&P

\

Three Days Previous
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Applications of Machine Learning

Stock market data O M -
categorical output, classification problem ° : -
Data 1250 observations of stock market tendency 2001-2005 E _ I :
Goal predict whether the market rises or falls ig 3 S E
e 0
o v
Observation e
1. market increased on 648 days, % ° < : :
decreased on 602 days & H i
2. no prediction is possible based on data from yesterday, S ,
two days before, or three days before... >
Down Up

_ ' Today's direction
More refined methods can us to discover weak trends,

which allows predictions of 60% accuracy (!) = Chapter 4. Prediction of stock market tendency
with a quadratic discriminant

analysis model
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Applications of Machine Learning

Gene expression data
no output variable available, unsupervised learning

Data 64 cells lines, 6830 gene expressions for each
Goal find groups of cell lines with similar expression profiles

Observations
1. we can naturally group the cell lines into four groups
2. deciding on the number of clusters is often difficult
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Plot along the first two
principal components. Colors
represent grouping
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Applications of Machine Learning

Gene expression data
no output variable available, unsupervised learning

Data 64 cells lines, 6830 gene expressions for each
Goal find groups of cell lines with similar expression profiles

Zy

-20

Observations
1. we can naturally group the cell lines into four groups
2. deciding on the number of clusters is often difficult

Unsupervised learning allows us to perform
exploratory data analysis — Chapter 10
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Introduction
ISLR 2, ESL 2



Example Advertising

Advertising data

Data on sales of a product in 200 markets, and
on advertising budgets via TV, radio and newspaper

Goal adjust advertising budgets to maximize sales

= advertising budgets are input variables X (aka predictors, features, independent variables)
= X; TV budget
= X, radio budget
= X3 newspaper budget

= sales Yis the output variable (aka response, dependent variable)

In general, we assume a relationship between X and Y of the form
Y=FfX)+e=f(Xy,Xs ., Xp) + €
where € is a random additive error term with zero mean

20



Example Advertising

Sales

Sales
Sales

v

A

\ 4

TV

200

300 0 10 20 30 40 50

Radio

Numbers are in thousands of dollars
In general, sales increase as advertising is stepped up.
The blue lines result from least-squares linear regression
to the variable along the x-axis

40 60 80

Newspaper

100
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Example Income

The relationship between wage and years of education is nonlinear
= thisis a simulated example (synthetic data set), the blue line represents the true functional relationship
= in general, the true relationship is unknown and must be estimated

Income
-40 50 60 70 80

E

20

Years of Education



Why estimate f? prediction

Often inputs X are available, output Y is not, but is desired
= estimating the output gives a prediction

V=700

In prediction, we often treat f as a black box whose form is not of interest

= for example, input is blood profile of a patient, and
output is the patient’s risk of a severe reaction to a drug

23



Why estimate f? prediction

Often inputs X are available, output Y is not, but is desired
= estimating the output gives a prediction

V=700

In prediction, we often treat f as a black box whose form is not of interest
= the accuracy of ¥ depends on the reducible error and the irreducible error
= forfixed X and f we have
12 5 2
Ely - Y] = E[f) + e — f(X)]
A 2
= =E[f) - fO] +Var(e)
xpectation over all . D |
possible training sets ! T

reducible error irreducible error

The goal of prediction is to minimize the reducible error
The irreducible error cannot be avoided

24



Why estimate f? inference

In inference, the goal is insight into relationship between input and output

= which predictors strongly associate with the response? Often only few

= what is the relationship between the response and each predictor? Often depends on other predictors
= s the relationship between the predictors linear or more complicated? Often different than thought

For the advertising data, example questions are
= which media contribute to sales? which generate the biggest boost?
= how much increase in sales is associated with a given increase in TV ads?

Often, prediction and inference are both of interest

= thereis (almost always) a tradeoff between the two

= simple models, e.g. linear regression, are easily interpretable but may be inaccurate

= flexible models, e.g. deep learning, can model almost anything but are notoriously hard to interpret

25



How to estimate f7?

We have training data of n observations over input and output, {(x1, v1), (x2,V2), -, (Xn, Yn)}

We are looking for a function f such that for any pair (X,Y) we have Y = f(X)
= we distinguish between parametric and nonparametric methods

Non-linear data
Blue = true function

26



How to estimate f7?

We have training data of n observations over input and output, {(x1, 1), (x2,V2), .-, (X0, Yn)}

We are looking for a function f such that for any pair (X,Y) we have Y = f(X)
= we distinguish between parametric and nonparametric methods

Parametric Methods T T

= we assume a functional form, usually
something simple like a linear model

fX) = Bo + P1X1 + B2 Xy + -+ B X,
= estimating f then comes down to
choosing the right model parameters f3;

= problem the form of f may not match
the true form of f

Linear model
(Chapter 3)
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How to estimate f7?

We have training data of n observations over input and output, {(x1, v1), (x2,V2), -, (Xn, Yn)}

~

We are looking for a function f such that for any pair (X,Y) we have Y = f(X)
= we distinguish between parametric and nonparametric methods

Nonparametric Methods

= we now aim to find the true form of f >
. . . 5 7/’7";,‘;,',"""‘,..7..
= having to learn the form (rather than just its )
aq o lseer 5 7, /3
coefficients) makes the problem much harder ,:,"%;;;Z%’;’,‘z‘,;,,'

= we will have to choose many parameters;
this requires many observations

= otherwise, we risk modelling the noise
in the training set: overfitting

Non-linear data
Blue = true function



How to estimate f7?

We have training data of n observations over input and output, {(x1, v1), (x2,V2), -, (Xn, Yn)}

We are looking for a function f such that for any pair (X,Y) we have Y = f(X)
= we distinguish between parametric and nonparametric methods

Nonparametric Methods

= we now aim to find the true form of f

= having to learn the form (rather than just its
coefficients) makes the problem much harder
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= we will have to choose many parameters; ST
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this requires many observations

= otherwise, we risk modelling the noise
in the training set: overfitting

Smooth nonlinear model
(Chapter 7)
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Accuracy vs. Interpretability

A
S | Subset Selection
T Lasso
Least Squares
2
:«% Generalized Additive Models
@ Trees
2
T
=
Bagging, Boosting
5 Support Vector Machines
- Neural Networks
Low High

Flexibility
30
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Accuracy vs. Interpretability

Why would we ever prefer a more restricted model over a more flexible one?

More flexible models have larger numbers of parameters
1. Estimating all those parameters is computationally more expensive
2. Complicated models are hard to interpret, when inference is the goal, simple models are preferred

3. If we have too few observations, we do not have enough information to accurately estimate many
parameters. Flexible models incur a higher risk of overfitting

(The ninetees called, they want downside #1 back) 31



Supervised vs. Unsupervised Learning

Supervised Learning

= data: inputs and outputs (x;, y;) for observations i = 1, ..., n that follow
an unknown functional pattern that includes noise, e.g. Y = f(X) + ¢

= goal: find function f such that Y ~ f(X) for every conceivably seen input X
= setting is like an apprentice who learns from examples given by a teacher (supervisor)

Semi-supervised learning
= data: inputs x; for observations i = 1, ..., n, only some outputs y;
= goal: same as for supervised learning, but also leverages unlabeled data

32



Supervised vs. Unsupervised Learning

Supervised Learning

= data: inputs and outputs (x;, y;) for observations i = 1, ..., n that follow
an unknown functional pattern that includes noise, e.g. Y = f(X) + ¢

goal: find function f such that Y = f(X) for every conceivably seen input X
= setting is like an apprentice who learns from examples given by a teacher (supervisor)

Unsupervised learning
= data: inputs x; for observationsi = 1, ..., n, no outputs

= goal: elucidate relationships between the variables or the observations
= often equated with cluster analysis, but many more aspects exist

33



Example Clustering Problems

Xz

v

v

Well separated clusters

Overlapping clusters
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Example Clustering Problems
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Assessing model accuracy

In regression, we assess the quality of fit by mean squared error (MSE)
= over training data, it is defined as

n

MSE == (v~ F(x))

i=1

which we typically refer to as the training error

= we are generally more interested in the error over unseen data

avg(f(xo) - }’0)2

which we typically call the test error or generalization error

36



Example Almost linear data
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Example Moderately nonlinear data
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Example Highly linear data

N N
1
(QV]
&
<
N underfit
=
S
&
——
£ it
> 3
(o
(%]
c
T o
e} L —
=
N = True function 2
linear model
= smooth splines
o = rugged splines
o
~ S
L
0 20 40 60 80 100 2 5 10 20
X Flexibility

(degrees of freedom, or dof)

39



Bias-Variance Tradeoff
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Bias-Variance Tradeoff
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Bias-Variance Tradeoff
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Bias-Variance Tradeoff

I
f1 f2

filfz i /2

f .f @ @ @
3|/4 A A £ £ A A
i f1 72 o |A

f 3 f 4 I
Unbiased Unbiased Biased Biased
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® True function f fi, 2. fso far

Estimates of f on different data sets



Bias-Variance Tradeoff

The shape of the curve for test error is due to a basic tradeoff in the MSE

E (30 = 1)) =Var (7)) + [pias (f6w)[”+ vare

Expectation over all
possible training sets

Bias is the systematic deviation of an estimate to the true value

Bias (f(x0)) = E(f (o) — ¥o)
Variance is the variation of the estimate between different training sets

var (feo)) = B (FCxo) - B (FGx0)) )

48



Bias-Variance Decomposition
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Moderately nonlinear function
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Synthetic data example 3
Highly nonlinear function
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Classification

We can measure the quality of a classifier using a loss function

typically, we use misclassification error
let I be an indicator function over a predicate p, with I(p) = 1if p = true and I(p) = 0 otherwise

. : , 1 "
the training error over n examples is defined as ;Z?ﬂ 1(y; # i)

the test error is defined as avg(I(yO * )70))

50



The Bayes Classifier

We can minimize test error by the following very simple classifier

arg max Pr(Y =j | X = xq)
j=1,...k
for a classification problem with k classes 1, ..., k
This is known as the Bayes classifier

= jt can be computed when we know the true probability distribution (e.g. synthetic data)
= for all other settings, e.g. real data, we can at best estimate it

51



Example Binary Classification

Data 100 observations over two groups
Bayes decision boundary, i.e. those points where

Pr(Y=1|X=x,)=0.5
is shown as a dashed line

Bayes error rate, i.e. the irreducible error, is defined as
1- E(r_naiué Pr(Y =j | X))
j=1,

In this example, the Bayes error rate is 0.1304

52



Nearest Neighbors

k-nearest neighbors (kKNN)

Classifies each point to the majority class among its
k nearest neighbors, i.e.

1
arg max = > 10 =)

j=1,..k
LENy

where JV; are the k data points nearest to x,

kNN withk =1

overtrained
model too complex
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Number of Neighbors

kNN withk =1 kNN with k = 10 kNN with k =100

overtrained seems just right undertrained
model too complex model too simple



Number of Neighbors

Bayes error rate
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Summary

An introduction to a statistical learning problem

Given data points (x;,y;) fori = 1, ...,n, our goal is to learn the true f.

Inference: The estimate f can be used to answer specific questions about f.
Prediction: The estimate f can be used to make prediction ¥ = £(X).

Supervised and unsupervised learning

Inherent tradeoffs in statistical learning
Accuracy vs. interpretability: More flexible models are often more accurate, but less interpretable.
Bias vs. variance: More flexible models often have lower bias, but higher variance.

Model choice is one of the most crucial decisions.



