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2017 – ML beats humans at playing Go

AlphaGo Zero beats world champion Go player Lee Sedol
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2019 – ML beats humans at playing StarCraft

(Arulkumaran et al. 2019)1 3

AI beats top human players at StarCraft II



2020 – ML identifies powerful new antibiotic

Halicin was developed against diabetes, ML predicted it is also an antibiotic

(Stokes et al. 2020)1 4



2020 – ML generates coherent language

(Brown et al. 2020)1 5



2020 – ML generates coherent language

(Brown et al. 2020)1 6



2022 – ML generates any image

DALL-E 2 generates images from any text query

(Stokes et al. 2020)1 7

“Leonardo	da	Vinci	
early	sketches	
of	a	cyborg”



Since 2022 – Large Language Models (LLMs)  

(OpenAI 2023)1 8



Krikamol Muandet
Jilles Vreeken

Bias and Variance
ISLR 1-2, ESL 1-2

Lecture 1



Applications of Machine Learning

Wage data 
continuous output, regression problem

Data 3000 records of wages of males in the US
Goal Understand the association between age, education, 

calendar year, and wage

Observations
1. wage increases with age before 60, and 

decreases with age after 60
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Scatter	plot
Blue	line:	smoothed	average
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Applications of Machine Learning

Wage data 
continuous output, regression problem

Data 3000 records of wages of males in the US
Goal Understand the association between age, education,

calendar year, and wage

Observations
1. wage increases with age before 60, and 

decreases with age after 60
2. slight linear increase of wage over time 

($10,000 over six years) 
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Applications of Machine Learning

Wage data 
continuous output, regression problem

Data 3000 records of wages of males in the US
Goal Understand the association between age, education, 

calendar year, and wage

Observations
1. wage increases with age before 60, and 

decreases with age after 60
2. slight linear increase of wage over time 

($10,000 over six years) 
3. wage increases with the level of education

We can predict wage best using three features at once → Chapter 3
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Box	plots	with	25	to	75	percentile	as	boxes	
and	5	and	95	percentile	as	bars	
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Applications of Machine Learning

Stock market data
categorical output, classification problem

Data 1250 observations of stock market tendency 2001-2005
Goal predict whether the market rises or falls

Observation
1. market increased on 648 days, 

decreased on 602 days
2. no prediction is possible based on data from yesterday…
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Applications of Machine Learning

Stock market data
categorical output, classification problem

Data 1250 observations of stock market tendency 2001-2005
Goal predict whether the market rises or falls

Observation
1. market increased on 648 days, 

decreased on 602 days
2. no prediction is possible based on data from yesterday, 

two days before…
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Applications of Machine Learning

Stock market data
categorical output, classification problem

Data 1250 observations of stock market tendency 2001-2005
Goal predict whether the market rises or falls

Observation
1. market increased on 648 days, 

decreased on 602 days
2. no prediction is possible based on data from yesterday, 

two days before, or three days before…
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Applications of Machine Learning

Stock market data
categorical output, classification problem

Data 1250 observations of stock market tendency 2001-2005
Goal predict whether the market rises or falls

Observation
1. market increased on 648 days, 

decreased on 602 days
2. no prediction is possible based on data from yesterday, 

two days before, or three days before…

More refined methods can us to discover weak trends, 
which allows predictions of 60% accuracy (!) → Chapter 4. 
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Prediction	of	stock	market	tendency	
with	a	quadratic	discriminant	

analysis	model
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Applications of Machine Learning

Gene expression data
no output variable available, unsupervised learning

Data 64 cells lines, 6830 gene expressions for each
Goal find groups of cell lines with similar expression profiles

Observations
1. we can naturally group the cell lines into four groups
2. deciding on the number of clusters is often difficult
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Plot	along	the	first	two	
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Applications of Machine Learning

Gene expression data
no output variable available, unsupervised learning

Data 64 cells lines, 6830 gene expressions for each
Goal find groups of cell lines with similar expression profiles

Observations
1. we can naturally group the cell lines into four groups
2. deciding on the number of clusters is often difficult

Unsupervised learning allows us to perform 
exploratory data analysis → Chapter 10
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ISLR 2, ESL 2

Introduction

1 19



Example Advertising

Advertising data
Data on sales of a product in 200 markets, and 

on advertising budgets via TV, radio and newspaper
Goal adjust advertising budgets to maximize sales

§ advertising budgets are input variables 𝑋 (aka predictors, features, independent variables)
g 𝑋1 TV budget
g 𝑋2 radio budget 
g 𝑋3 newspaper budget

§ sales Y is the output variable  (aka response, dependent variable)

In general, we assume a relationship between 𝑋 and 𝑌 of the form
𝑌 = 𝑓 𝑋 + 𝜖 = 𝑓 𝑋#, 𝑋$, … , 𝑋0 + 𝜖

where 𝜖 is a random additive error term with zero mean
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Example Advertising

1

Numbers	are	in	thousands	of	dollars
In	general,	sales	increase	as	advertising	is	stepped	up.	
The	blue	lines	result	from	least-squares	linear	regression	

to	the	variable	along	the	𝑥-axis
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Example Income

The relationship between wage and years of education is nonlinear
§ this is a simulated example (synthetic data set), the blue line represents the true functional relationship
§ in general, the true relationship is unknown and must be estimated
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Why estimate 𝑓?  prediction

Often inputs 𝑿 are available, output 𝒀 is not, but is desired
§ estimating the output gives a prediction

4𝑌 = 5𝑓(𝑋)

In prediction, we often treat 5𝑓 as a black box whose form is not of interest
§ for example, input is blood profile of a patient, and 

output is the patient’s risk of a severe reaction to a drug

1 23



Why estimate 𝑓?  prediction

Often inputs 𝑿 are available, output 𝒀 is not, but is desired
§ estimating the output gives a prediction

4𝑌 = 5𝑓(𝑋)

In prediction, we often treat 5𝑓 as a black box whose form is not of interest
§ the accuracy of 4𝑌 depends on the reducible error and the irreducible error
§ for fixed 𝑋 and 𝑓 we have

E 𝑌 − 4𝑌
$
= 𝐸 𝑓 𝑋 + 𝜖 − 5𝑓 𝑋

$

= E 𝑓 𝑋 − 5𝑓 𝑋
$
+ 𝑉𝑎𝑟(𝜖)

The goal of prediction is to minimize the reducible error
The irreducible error cannot be avoided

1

reducible error irreducible error

Expectation over all 
possible  training sets
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Why estimate 𝑓?  inference

In inference, the goal is insight into relationship between input and output
§ which predictors strongly associate with the response? Often only few
§ what is the relationship between the response and each predictor? Often depends on other predictors
§ is the relationship between the predictors linear or more complicated? Often different than thought

For the advertising data, example questions are
§ which media contribute to sales? which generate the biggest boost?
§ how much increase in sales is associated with a given increase in TV ads?

Often, prediction and inference are both of interest 
§ there is (almost always) a tradeoff between the two
§ simple models, e.g. linear regression, are easily interpretable but may be inaccurate
§ flexible models, e.g. deep learning, can model almost anything but are notoriously hard to interpret

1 25



How to estimate 𝑓?

We have training data of 𝑛 observations over input and output, {(𝑥#, 𝑦#), (𝑥$, 𝑦$), … , (𝑥A, 𝑦A)}

We are looking for a function 5𝑓 such that for any pair (𝑋, 𝑌) we have 𝑌 ≈ 5𝑓(𝑋)
§ we distinguish between parametric and nonparametric methods

1

Non-linear	data
Blue	=	true	function
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How to estimate 𝑓?

We have training data of 𝑛 observations over input and output, {(𝑥#, 𝑦#), (𝑥$, 𝑦$), … , (𝑥A, 𝑦A)}

We are looking for a function 5𝑓 such that for any pair (𝑋, 𝑌) we have 𝑌 ≈ 5𝑓(𝑋)
§ we distinguish between parametric and nonparametric methods

Parametric Methods
§ we assume a functional form, usually 

something simple like a linear model
𝑓 𝑋 = 𝛽E + 𝛽#𝑋# + 𝛽$𝑋$ + ⋯+ 𝛽0𝑋0

§ estimating 5𝑓 then comes down to 
choosing the right model parameters 𝛽G

§ problem the form of 5𝑓 may not match 
the true form of 𝑓

1

Linear	model
(Chapter	3)
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How to estimate 𝑓?

We have training data of 𝑛 observations over input and output, {(𝑥#, 𝑦#), (𝑥$, 𝑦$), … , (𝑥A, 𝑦A)}

We are looking for a function 5𝑓 such that for any pair (𝑋, 𝑌) we have 𝑌 ≈ 5𝑓(𝑋)
§ we distinguish between parametric and nonparametric methods

Nonparametric Methods
§ we now aim to find the true form of 𝑓
§ having to learn the form (rather than just its 

coefficients) makes the problem much harder
§ we will have to choose many parameters;

this requires many observations
§ otherwise, we risk modelling the noise 

in the training set: overfitting

1

Non-linear	data
Blue	=	true	function
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How to estimate 𝑓?

We have training data of 𝑛 observations over input and output, {(𝑥#, 𝑦#), (𝑥$, 𝑦$), … , (𝑥A, 𝑦A)}

We are looking for a function 5𝑓 such that for any pair (𝑋, 𝑌) we have 𝑌 ≈ 5𝑓(𝑋)
§ we distinguish between parametric and nonparametric methods

Nonparametric Methods
§ we now aim to find the true form of 𝑓
§ having to learn the form (rather than just its 

coefficients) makes the problem much harder
§ we will have to choose many parameters;

this requires many observations
§ otherwise, we risk modelling the noise 

in the training set: overfitting

1

Smooth	nonlinear	model	
(Chapter	7)
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Accuracy vs. Interpretability

1

Subset Selection
Lasso

Least Squares

Generalized Additive Models
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Support Vector Machines

Neural Networks

Low High

Hi
gh

Lo
w

In
te

rp
re

ta
bi

lit
y

Flexibility

Deep Neural Networks
30



Accuracy vs. Interpretability

Why would we ever prefer a more restricted model over a more flexible one?

More flexible models have larger numbers of parameters 
1. Estimating all those parameters is computationally more expensive
2. Complicated models are hard to interpret, when inference is the goal, simple models are preferred
3. If we have too few observations, we do not have enough information to accurately estimate many 

parameters. Flexible models incur a higher risk of overfitting

(The ninetees called, they want downside #1 back)1 31



Supervised vs. Unsupervised Learning

Supervised Learning
§ data: inputs and outputs (𝑥G, 𝑦G) for observations 𝑖 = 1,… , 𝑛 that follow 

an unknown functional pattern that includes noise, e.g.  𝑌 = 𝑓 𝑋 + 𝜖
§ goal: find function 5𝑓 such that 𝑌 ≈ 5𝑓(𝑋) for every conceivably seen input 𝑋

g setting is like an apprentice who learns from examples given by a teacher (supervisor)

Semi-supervised learning
§ data: inputs 𝑥𝑖 for observations 𝑖 = 1,… , 𝑛, only some outputs 𝑦G
§ goal: same as for supervised learning, but also leverages unlabeled data

1 32



Supervised vs. Unsupervised Learning

Supervised Learning
§ data: inputs and outputs (𝑥G, 𝑦G) for observations 𝑖 = 1,… , 𝑛 that follow 

an unknown functional pattern that includes noise, e.g.  𝑌 = 𝑓 𝑋 + 𝜖
§ goal: find function 5𝑓 such that 𝑌 ≈ 5𝑓(𝑋) for every conceivably seen input 𝑋

g setting is like an apprentice who learns from examples given by a teacher (supervisor)

Semi-supervised learning
§ data: inputs 𝑥𝑖 for observations 𝑖 = 1,… , 𝑛, only some outputs 𝑦G
§ goal: same as for supervised learning, but also leverages unlabeled data

Unsupervised learning
§ data: inputs 𝑥𝑖 for observations 𝑖 = 1,… , 𝑛, no outputs
§ goal: elucidate relationships between the variables or the observations

g often equated with cluster analysis, but many more aspects exist
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Example Clustering Problems 

1

Well	separated	clusters

𝑋 $

𝑋#

Overlapping	clusters

𝑋 $

𝑋#
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Example Clustering Problems 

1

Well	separated	clusters

𝑋 $

𝑋#

Overlapping	clusters

𝑋 $

𝑋#
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Assessing model accuracy

In regression, we assess the quality of fit by mean squared error (MSE)
§ over training data, it is defined as

𝑀𝑆𝐸 =
1
𝑛
K
GL#

A

𝑦G − 5𝑓 𝑥G
$

which we typically refer to as the training error

§ we are generally more interested in the error over unseen data

𝑎𝑣𝑔 5𝑓 𝑥E − 𝑦E
$

which we typically call the test error or generalization error
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Example Almost linear data
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Example Moderately nonlinear data
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Example Highly linear data
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Bias-Variance Tradeoff
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Bias-Variance Tradeoff
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Bias-Variance Tradeoff
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Bias-Variance Tradeoff
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Bias-Variance Tradeoff
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Bias-Variance Tradeoff
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Bias-Variance Tradeoff
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Bias-Variance Tradeoff
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Bias-Variance Tradeoff

The shape of the curve for test error is due to a basic tradeoff in the MSE

𝐸 𝑦E − 5𝑓 𝑥E
$
= 𝑉𝑎𝑟 5𝑓 𝑥E + 𝐵𝑖𝑎𝑠 5𝑓 𝑥E

$
+ 𝑉𝑎𝑟(𝜖)

Bias is the systematic deviation of an estimate to the true value
𝐵𝑖𝑎𝑠 5𝑓 𝑥E = 𝐸( 5𝑓 𝑥E − 𝑦E)

Variance is the variation of the estimate between different training sets

𝑉𝑎𝑟 5𝑓 𝑥E = 𝐸 5𝑓 𝑥E − 𝐸 5𝑓 𝑥E
$

1

Expectation over all 
possible  training sets
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Flexibility

1.
0

2.
0

2.
5

2 20

1.
5

0.
5

105

0.
0

Bias-Variance Decomposition

1

Synthetic	data	example	3
Highly	nonlinear	function

Synthetic	data	example	2
Almost	linear	function

Synthetic	data	example	1
Moderately	nonlinear	function

Flexibility

1.
0

2.
0

2.
5

2 20

1.
5

0.
5

105

0.
0

Flexibility
1.

0
2.

0
2.

5
2 20

1.
5

0.
5

105
0.

0

MSE
Bias
Var

49



Classification

We can measure the quality of a classifier using a loss function
§ typically, we use misclassification error 
§ let 𝐼 be an indicator function over a predicate 𝑝, with 𝐼 𝑝 = 1 if 𝑝 ≡ 𝑡𝑟𝑢𝑒 and 𝐼 𝑝 = 0 otherwise

§ the training error over 𝑛 examples is defined as  #
A
∑GL#A 𝐼(𝑦G ≠ \𝑦G)

§ the test error is defined as avg 𝐼 𝑦E ≠ \𝑦E

1 50



The Bayes Classifier

We can minimize test error by the following very simple classifier
arg max

cL#,…,d
Pr(𝑌 = 𝑗 ∣ 𝑋 = 𝑥E)

for a classification problem with 𝑘 classes 1,… , 𝑘

This is known as the Bayes classifier 
§ it can be computed when we know the true probability distribution (e.g. synthetic data) 
§ for all other settings, e.g. real data, we can at best estimate it
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Example Binary Classification

Data 100 observations over two groups

Bayes decision boundary, i.e. those points where
Pr 𝑌 = 1 𝑋 = 𝑥E = 0.5

is shown as a dashed line

Bayes error rate, i.e. the irreducible error, is defined as
1 − 𝐸(max

cL#,$
Pr(𝑌 = 𝑗 ∣ 𝑋))

In this example, the Bayes error rate is 0.1304

1

𝑋#

𝑋 $
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Nearest Neighbors

𝒌-nearest neighbors (𝒌NN) 
Classifies each point to the majority class among its 
𝑘 nearest neighbors, i.e.

arg max
cL#,…,d

1
𝑘
K
G∈𝒩n

𝐼(𝑦G = 𝑗)

where 𝒩E are the 𝑘 data points nearest to 𝑥E

1

overtrained
model	too	complex

𝑘𝑁𝑁with	𝑘 = 1

𝑋#

𝑋 $
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Number of Neighbors
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Number of Neighbors
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Summary

§ An introduction to a statistical learning problem

§ Given data points (𝑥G, 𝑦G) for 𝑖 = 1, … , 𝑛, our goal is to learn the true 𝑓.
g Inference: The estimate 5𝑓 can be used to answer specific questions about 𝑓.
g Prediction: The estimate 5𝑓 can be used to make prediction 4𝑌 = 5𝑓(𝑋).

§ Supervised and unsupervised learning

§ Inherent tradeoffs in statistical learning
g Accuracy vs. interpretability: More flexible models are often more accurate, but less interpretable.
g Bias vs. variance: More flexible models often have lower bias, but higher variance.

§ Model choice is one of the most crucial decisions.
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