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Looking for Linear Relationships

II

Numbers	are	in	thousands	of	dollars
In	general,	sales	increase	as	advertising	is	stepped	up.	
The	blue	lines	result	from	least-squares	linear	regression	

to	the	variable	along	the	𝑥-axis
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Questions

1. Is there a relationship between advertising budget and sales?
g if the evidence is weak, advertising may not be effective

2. How strong is the relationship between advertising and sales?
g can sales be predicted accurately based on the advertising budget?

3. Which media contribute to sales?
g are all three media effective?

4. How accurately can we estimate the effect of a medium on sales?
g what is the expected range of sales increase per dollar spent on a medium?

5. How accurately can we predict future sales?

6. Is the relationship in fact linear?

7. Is there synergy among advertising media?
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ISLR 3.1, ESL 3.2
Simple Linear Regression
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Simple Linear Regression

We assume that 𝑋 and 𝑌 are related as 𝑌 ≈ 𝛽! + 𝛽"𝑋
§ for example, 𝑠𝑎𝑙𝑒𝑠 ≈ 𝛽! + 𝛽"×𝑇𝑉
§ the estimated value of 𝑌 for input 𝑋 = 𝑥# is /𝑦# = 1𝛽! + 1𝛽"𝑥#
§ the intercept, 𝛽!, and slope, 𝛽", are coefficients or parameters
§ this is also known as simple or univariate linear regression 

Given training data set of 𝑛 observations 𝑥", 𝑦" , 𝑥#, 𝑦# , … , (𝑥$, 𝑦$)

Goal estimate the unknown coefficients 𝛽% and 𝛽" such that 
𝑦& ≈ ,𝛽% + ,𝛽"𝑥&

for all 𝑖 = 1,… , 𝑛 and for future values of 𝑥
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Estimating the Coefficients

We measure the deviation of the estimate to the true value by a loss function
§ let 2𝑦# = 1𝛽! + 1𝛽"𝑥# , then 𝑒# = 𝑦# − 2𝑦# is the residual

In regression, we mostly use the residual sum of squares (RSS)
𝑅𝑆𝑆 = 𝑒"$ + 𝑒$$ +⋯+ 𝑒%$

= 𝑦" − ( 1𝛽!+ 1𝛽"𝑥")
$
+ 𝑦$ − ( 1𝛽!+ 1𝛽"𝑥$)

$
+⋯+ 𝑦% − ( 1𝛽!+ 1𝛽"𝑥%)

$

§ this function is quadratic in 𝛽! and 𝛽"
§ setting its derivative to zero yields the least-square coefficient estimates

II 6

Contour and 3D plots of the RSS
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Estimating the Coefficients
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𝑅𝑆𝑆 = 𝑒"$ + 𝑒$$ +⋯+ 𝑒%$ = 𝑦! − ( +𝛽"+ +𝛽!𝑥!)
# + 𝑦# − ( +𝛽"+ +𝛽!𝑥#)

# +⋯+ 𝑦$ − ( +𝛽"+ +𝛽!𝑥$)
#



Estimating the Coefficients
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Linear	fit	of	the	advertising	data	appears	appropriate	for	all	but	the	smallest	advertising	budgets
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Accuracy of Coefficient Estimates

We assume the true relationship includes noise 
that is independent from the observations

𝑌 = 𝛽% + 𝛽"𝑋 + 𝜖 (*)
§ if this is true, the population regression line is the best 

linear approximation to the relationship between 𝑋 and 𝑌
§ the population regression line is usually unobserved

The least-squares fit on the training data is given by
2𝑦 = ,𝛽% + ,𝛽"𝑥

§ the fit depends on the (finite!) training data
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Least-squares	fit	(blue)	and	
population	regression	line	(red)	
on	simulated	data	𝑌 ≔ 2+3𝑋+ 𝜖
with	Gaussian	error	𝜖 with	0–mean	
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Accuracy of Coefficient Estimates

We assume the true relationship includes noise 
that is independent from the observations

𝑌 = 𝛽% + 𝛽"𝑋 + 𝜖 (*)
§ if this is true, the population regression line is the best 

linear approximation to the relationship between 𝑋 and 𝑌
§ the population regression line is usually unobserved

The least-squares fit on the training data is given by
2𝑦 = ,𝛽% + ,𝛽"𝑥

§ the fit depends on the (finite!) training data
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Unbiased Estimates

How do we estimate the mean 𝜇 of a random variable 𝑌?
§ the sample estimate over a finite set of observations is the average

avg 𝑦", 𝑦$, … , 𝑦% =
1
𝑛
C
#&"

%

𝑦# = 9𝑦

§ on average, we have 9𝑦 = 𝜇
§ 9𝑦 is an unbiased estimate for 𝜇

The least-square fit is an unbiased estimate for the population regression line
§ among all unbiased linear estimators, the least-square fit is the one with the smallest variance 
§ Gauss-Markov Theorem; if you learn one thing from EML, this should be it. 
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Assessing the Accuracy of Estimates

How accurately does �̂� estimate 𝜇?
§ assuming every sample is independent, we have the standard error of �̂�

𝑆𝐸 �̂� = 𝑉𝑎𝑟 �̂� = ⁄𝜎# 𝑛

§ where 𝑛 is the number of samples, and 𝜎 is the population standard deviation
§ the more samples, the smaller the standard error

The standard errors of the least-square coefficients 𝛽% and 𝛽" are

𝑆𝐸 ,𝛽%
#
= 𝜎# "

$ +
8̅/

∑012
3 80:8̅ / 𝑆𝐸 ,𝛽"

#
= ;/

∑012
3 80:8̅ /

§ we again assume that errors are independent, uncorrelated, and have a common variance 𝜎$ = 𝑉𝑎𝑟 𝜖

(assuming i.i.d., that samples are independently and identically drawn from the same distribution is one of Machine Learning’s big lies)II 12



Assessing the Accuracy of Estimates

Observations
1. 𝑆𝐸( 1𝛽") decreases as the 𝑥# are more spread out, 

making the slope is the easier to determine
2. 𝑆𝐸 1𝛽! = 𝑆𝐸 �̂� if �̅� = 0 in which case 1𝛽! = 9𝑦
3. 𝜎 is generally not known, but, we can provide a sample 

estimate for it: the residual standard error
𝑅𝑆𝐸 = ⁄𝑅𝑆𝑆 𝑛 − 2
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Computing Confidence Intervals

The famous 95% confidence interval
§ interval that with 95% probability contains the true value
§ we compute the limits from the sample (training) data
§ for linear regression coefficient 1𝛽! we have

[ 1𝛽! − 2 ⋅ 𝑆𝐸 1𝛽! , 1𝛽! + 2 ⋅ 𝑆𝐸 1𝛽! ]

§ while for 1𝛽" we analogously have
[ 1𝛽" − 2 ⋅ 𝑆𝐸 1𝛽" , 1𝛽" + 2 ⋅ 𝑆𝐸 1𝛽" ]

Why is this the case? 
§ we assume that the error in the output is Gaussian distributed
§ the coefficient estimates are then also Gaussian distributed (!)
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Probability mass in a Gaussian
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Example Advertising Data
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Linear	fit	of	the	advertising	data	appears	appropriate	for	all	but	the	smallest	advertising	budgets
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Hypothesis Testing

When can we determine if there is a significant relationship between 𝑋 and 𝑌?
§ we can statistically test the null hypothesis 𝑯𝟎 against the alternative hypothesis 𝑯𝒂

§ in our setting, this means testing 𝐻!: 𝛽" = 0 vs. 𝐻6: 𝛽" ≠ 0

How do we determine if 𝛽" is far enough from zero?
§ depends on the accuracy of 1𝛽", i.e. depends on 𝑆𝐸( 1𝛽")
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Null-hypothesis

The 𝒕-statistic is the normalized deviation of ,𝛽" from 
zero

𝑡 =
1𝛽" − 0
𝑆𝐸 1𝛽"

§ this also known as the 𝑧-score, and it has a bell shape
§ for 𝑛 > 30, it is quite similar to the normal distribution



Hypothesis Testing

We can determine the probability that |𝑡| exceeds 
a certain value from the figure on the right
§ for 𝑡 > 2 it is roughly 5%
§ this probability is called the 𝑝-value

If a 𝑝-value is small, it is unlikely that the observed 
association of input and output is due to chance
§ a 𝑝-value of 5% means that, if the null-hypothesis holds, an 

equal or better result will happen in at most 5% of all datasets
§ we reject the null hypothesis at a significance level 𝛼 if the 𝑝-value ≤ 𝛼

Typical significance levels 𝛼 for rejecting the null hypothesis are 5% and 1%
§ the figure shows the values for 𝑛 = 30

(for |𝑡| > 2 the p-value is 4.6%, as 100 – 2 (34.1+13.6) = 4.6%)II 17
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Coefficient Std. error 𝑡-statistic 𝑝-value

intercept 7.0325 0.4578 15.36 <0.0001

TV 0.0475 0.0027 17.67 <0.0001
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Coefficient Std. error 𝑡-statistic 𝑝-value

intercept 9.312 0.563 16.54 <0.0001
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𝑹𝟐-statistic 

𝑅# =
𝑇𝑆𝑆 − 𝑅𝑆𝑆

𝑇𝑆𝑆 = 1 −
𝑅𝑆𝑆
𝑇𝑆𝑆

§ proportion of variance of 𝑌 explained by 𝑋
§ 𝑅# ∈ [0,1] and independent of the scale of 𝑌
§ 𝑅𝑆𝑆 measures variance unaccounted for after regression
§ the total sum of squares, or 𝑇𝑆𝑆 = ∑)*!$ 𝑦) − U𝑦 #, 

measures the total variance in 𝑌
§ 𝑇𝑆𝑆 − 𝑅𝑆𝑆 measures variance removed by regressing
§ high 𝑅# means an accurate model

Other Scores RSE and 𝑅!

Residual Standard Error (RSE)

𝑅𝑆𝐸 =
1

𝑛 − 2𝑅𝑆𝑆 =
1

𝑛 − 2X
)*!

$

𝑦) − Y𝑦) #

§ absolute measure of error measured in units of 𝑌
§ RSE estimates the standard error (roughly the 

average deviation) made by the regression line
§ for the advertising data, 𝑅𝑆𝐸 = 3.26, the mean 

sales is about 14, so the percentage error is 23%
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Other Scores Correlation

Correlation

𝐶𝑜𝑟 𝑋, 𝑌 =
∑)*!$ 𝑥) − �̅� 𝑦) − U𝑦

∑)*!$ 𝑥) − �̅� # ∑)*!$ 𝑦) − U𝑦 #

§ the sample estimate of correlation measures 
how linear the relationship between 𝑋 and 𝑌 is

§ in the univariate case, we can show that for the 
least-squares linear model, 𝐶𝑜𝑟 𝑋, 𝑌 # = 𝑅#

§ this does not extend to the multivariate case,
nor to models other than least-squares!
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ISLR 3.2, ESL 3.2.3
Multiple Linear Regression
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Multiple Linear Regression

For linear regression with multiple predictors we assume a model
𝑌 = 𝛽! + 𝛽"𝑋" + 𝛽$𝑋$ +⋯+ 𝛽7𝑋7 + 𝜖

= 𝛽! +C
#&"

7

𝛽#𝑋# + 𝜖 = 𝑿𝜷 + 𝜖

§ where 𝜷 = (𝛽!, 𝛽", … , 𝛽7) and 𝑿 = (1, 𝑋", … , 𝑋7) are vectors
§ for the advertising example we have 𝐬𝐚𝐥𝐞𝐬 = 𝛽! + 𝛽"×𝐓𝐕 + 𝛽$×𝐫𝐚𝐝𝐢𝐨 + 𝛽8×𝐧𝐞𝐰𝐬𝐩𝐚𝐩𝐞𝐫 + 𝜖

For the multivariate case, the residual sum of squares becomes 

𝑅𝑆𝑆 𝛽 =C
#&"

%

𝑦# − 2𝑦# $ =C
#&"

9

𝑦# − 𝛽! −C
:&"

7

𝒙#:; 𝛽:

$

= 𝑌 − 𝐗𝛽 ;(𝑌 − 𝐗𝛽)

§ which we can again solve by setting the (multidimensional) derivative to zero

*) we slightly misuse notation here, because +𝑦 is actually a function of the 𝛽!. We omit the hats on the 𝛽! since we treat  them as variables.II 22
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Estimating 𝛽 for Multiple Linear Regression

To minimize the RSS, we can differentiate w.r.t. 𝛽 and obtain
𝛿𝑅𝑆𝑆
𝛿𝛽

= −2𝐗; 𝑌 − 𝐗𝛽
𝛿$𝑅𝑆𝑆
𝛿𝛽𝛿𝛽;

= 2𝐗;𝐗

§ we assume that 𝐗 has full column rank, i.e. that 𝐗;𝐗 is positive definite*

§ the RSS then has a unique minimum at which the first derivative vanishes

We set the (multidimensional) derivative to zero
2𝐗; 𝑌 − 𝐗𝛽 = 0

§ solving for 𝛽 yields 1𝛽 𝑿;𝑿 *"𝑿;𝑌

§ solving for just one 𝛽# yields 1𝛽& =
∑012
3 80:8̅ ]0:U]
∑012
3 80:8̅ /

§ overall, we have o𝑌 = 𝐗F𝛽 = 𝐗 𝐗^𝐗 :"𝐗^𝑌

* A matrix 𝐀 is positive definite if for all vectors 𝒙 ≠ 0 we have 𝒙"𝑨𝒙 ≥ 0II 23

aka the hat matrix, or 𝐇



Interpreting Multiple Linear Regression

Geometric interpretation 1
§ the 𝑝 features together span a 𝑝-dimensional 

space in which 𝑛 observations live
§ the regression plane is the plane 

that hugs those points best
§ best is quantified by minimum 

𝑅𝑆𝑆 𝛽 = 𝑌 − 𝐗𝛽
$

II 24

visualization	in	the	space	ℝ4
spanned	by	the	𝑝 features
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Interpreting Multiple Linear Regression

Geometric interpretation 2
§ 𝑥!, … , 𝑥7 with 𝑥! ≡ 1 span a 𝑝-dimensional 

subspace of ℝ%, the column space

§ minimizing 𝑅𝑆𝑆 𝛽 = 𝑌 − 𝐗𝛽
$

implies an orthogonal projection
of the 𝒚-vector onto this subspace

§ 𝐇 computes this projection, and is
hence also called projection matrix
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𝐱!

𝐱"

𝐲

0𝑦

visualization	in	the	space	ℝ$
spanned	by	the	𝑛 observations



Multiple (Multivariate) Linear Regression

Linear least-squares models are unbiased
1𝛽 = 𝑿;𝑿 *"𝑿;𝑌
𝑌 = 𝐗𝛽 + 𝜖

§ to see this, substitute line 2 into line 1
1𝛽 = 𝐗;𝐗 *"𝐗; 𝐗𝛽 + 𝜖

= 𝐗;𝐗 *"𝐗;𝐗𝛽 + 𝐗𝐓𝐗
*"
𝐗;𝜖

= 𝛽 + 𝐗;𝐗 *"𝐗;𝜖
§ and compute expectations
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E 1𝛽 𝐗 = E 𝛽 + 𝐗;𝐗 *"𝐗;𝜖 𝐗
= E 𝛽 𝐗 + E 𝐗;𝐗 *"𝐗;𝜖 𝐗
= E 𝛽 𝐗 + 𝐗;𝐗 *"𝐗;E 𝜖 = 𝛽

E 1𝛽 = ∫ E[ 1𝛽|𝐗] 𝑑 Pr 𝐗 = ∫ 𝛽𝑑 Pr 𝐗 = 𝛽Noise is zero-mean!

Inputs and 
errors are 

independent!

Law of total expectation

Among all unbiased linear estimators, 
the least-square fit has the smallest variance

(Gauss-Markov Theorem)
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Multiple (Multivariate) Linear Regression

Univariate regression
For each value of the considered input, 
ignore the values of all other features

Multivariate regression
For each value of the considered input, 
keep the values of all other features fixed
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Coefficient Std. error 𝑡-statistic 𝑝-value

intercept 2.939 0.3119 9.42 <0.0001

TV 0.046 0.0014 32.81 <0.0001

radio 0.189 0.0086 21.89 <0.0001

newspaper -0.001 0.0059 -0.18 0.8599
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Multiple (Multivariate) Linear Regression

Why is newspaper significant in the univariate model, but not in the multivariate one? 
§ the correlation between newspaper and radio is 0.35, that is, we spend more on newspaper	

advertising in markets where we also spend more on radio advertising
§ in the univariate case, we attribute sales to newspaper that can also be due to radio: 

newspaper is a surrogate for radio

II 28

TV radio newspaper sales

TV 1.0000 0.0548 0.0567 0.7822

radio 1.0000 0.3541 0.5762

newspaper 1.0000 0.2283

sales 1.0000

Correlation	matrix	between	inputs



Multiple (Multivariate) Linear Regression

Why is newspaper significant in the univariate model, but not in the multivariate one? 
§ the correlation between newspaper and radio is 0.35, that is, we spend more on newspaper	

advertising in markets where we also spend more on radio advertising
§ in the univariate case, we attribute sales to newspaper that can also be due to radio: 

newspaper is a surrogate for radio

Examples of correlations
§ number of storks is highly correlated with number of births
§ number of gas stations is highly correlated with number of divorces

In these examples, another factor exists that actually causes these features
§ if this factor is part of the data we can find it using a multivariate model
§ if not, it is a hidden confounder, and we will inferring causally wrong relationships between features
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