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Jilles Vreeken and Krikamol Muandet

Exercise Sheet #1: Linear Regression

Deadline: Thursday, November 16, 2023, 15:00
Before solving the exercises, read the instructions on the course website.

� For each theoretical problem, submit a single pdf file that contains your answer to the respective
problem. This file may be a scan of your (legible) handwriting.

� For each practical problem, submit a single zip file that contains

– the completed jupyter notebook (.ipynb) file,

– any necessary files required to reproduce your results, and

– a pdf report generated from the jupyter notebook that shows all your results.

� For the bonus question, submit a single zip file that contains

– a pdf file that includes your answers to the theoretical part,

– the completed jupyter notebook (.ipynb) file for the practical component,

– any necessary files required to reproduce your results, and

– a pdf report generated from the jupyter notebook that shows your results.

� Every team member has to submit a signed Code of Conduct.

� IMPORTANT You must make the team on CMS before you upload the solutions. If you upload
the solutions first and create the team after it, the solution will not show for the new team member!

Problem 1 (T, 2 Points). Warmup.
Suppose we want to apply an appropriate statistical learning model to a given problem. Briefly explain
how the following parameters influence our choice,

� labelled vs. unlabelled input data,

� numerical vs. categorical variables,

� interpretability vs. prediction task,

� fixed vs. flexible number of model parameters.

Problem 2 (T, 8 Points). Error Measures.
In the regression setting, we most commonly use RSS as an error measure. Consider instead the following
loss function L,

L(β, r) =
1

n

N∑
i

ri
(
yi − β0 − xiβ

)2
(2.1)

for a target y and single predictor X ∈ Rn.

1. [1pts] What is the effect of the parameters ri?

2. [3pts] Derive the minimizer β̂ of Eq.(2.1) when we keep r fixed.

3. [3pts ] Consider the following choices for r. Explain the effect of each choice, as well as what purpose
it could serve.

� We set each ri to an integer value ri ∈ Z with ri > 1.

� Assuming that we know the noise variance σi of each data sample xi, we set ri =
1
σ2
i
.
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� Assume that we have two different datasets X1 and X2. From X1, we estimate the probability

density function over X as p, and from X2 we estimate the density as q. We set ri =
p(xi)
q(xi)

.

4. [1pts] List three main assumptions that we rely upon in ordinary linear regression. Is there an
assumption that we can address by using L instead of RSS?

Problem 3 (T, 4 Points). Geometry.
This exercise will take us through a geometric interpretation of linear regression using the following small
example,

X =

 1 1
0 1
−1 0

 , y =

20
3

 .

1. [1pts] State the linear regression solution β̂ for this system.

2. [1pts] Now consider the space S ∈ R3 spanned by the columns X(i) of X,

S = span(X(1), X(2)) = {a1X(1) + a2X
(2) | ai ∈ R} .

Show that the matrix
P = X(XTX)−1XT

maps the vector y onto this space.

3. [1pts] Show that the vector y − Py is perpendicular to the space S, y − Py ⊥ S. Hint: This is
equivalent to showing ⟨y − Py,Xa⟩ = 0 for all a ∈ R2, where ⟨·, ·⟩ denotes the dot product.

4. [1pts] Based on the previous part (3.3), how are P and β̂ related?

Problem 4 (T, 6 Points). Bias and Variance.
Consider the bias and variance of a linear model f .

1. [1pts] Explain in concise terms the meaning of bias and variance in the context of linear regression.
What is the relationship between them?

2. [2pts] Consider the following equation,

Var(f̂(x0)) +
[
Bias(f̂(x0))

]2
= E

[
(f(x0)− f̂(x0))

2
]
.

Explain the meaning of each term and show that the above holds.

3. [2pts] How is E
[
(f(x0)− f̂(x0))

2
]
related to the expected test MSE, E

[
(y0 − f̂(x0))

2
]
? Consider

the difference of these quantities and explain its meaning.

4. [1pts] State whether the following statement is true or false and explain why.

“The Gauss-Markov theorem states that the least-squares estimates β̂ have the smallest variance
among all linear estimates. Since the least-squares estimates β̂ are unbiased, this means that biased

estimators will always have a larger variance than β̂.”
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Problem 5 (P, 15 Points). Penguins.
In this exercise, we will explore the palmerpenguins dataset. Consult the provided Jupyter notebook
Practical Problem 1.ipynb for this problem and add your answers and code. Please rename the file
to include the matriculation numbers of all team members (e.g. 7010000 2567890 A1.ipynb).

1. [1pts] Load the data. Impute the missing values of all numerical features by replacing them with
the mean value for the respective feature.

2. [3pts] Select only the samples belonging to the species Gentoo. Consider the variables
flipper length mm, body mass g, bill length mm, bill depth mm and find the corellations
between each pair. Which appear to be most highly corellated?

3. [3pts] Fit a linear model predicting body mass g from bill depth mm for the species Bentoo and
show the linear parameters. Judge the goodness of fit using an appropriate measure. Useful
function: sklearn.LinearRegression.

4. [4pts] Now consider the pair of variables body mass g and bill depth mm over all penguin species.
Perform a hypothesis test on whether there is a statistically significant relationship between the
predictors. What problem do you see? Hint: Consider visualizing the relationship between the
variables using a scatterplot. Useful function: seaborn.scatterplot.

5. [2pts] Consider again the species Gentoo. Suppose we observe a new penguin with bill length of 17.
Using the body mass of its four closest neighbors (in terms of the bill lengths), predict the body
mass of the new penguin. Useful function: sklearn.neighbors.KNeighborsRegressor.

6. [2pts] For Gentoo, plot the RSS of a kNN regression predicting body mass g from bill depth mm

for different choices of k (k ∈ {1, ..., 10}). Which k would you choose here and why?

Problem 6 (Bonus). Projections.
In this exercise, we consider a high-dimensional X ∈ Rn×p with p >> n. Before doing our linear regression
analysis, we want to summarize this data in a smaller number of d dimensions. We start with d = 1.

1. Summarizing X in d = 1 directions can be thought of as projecting X to a line parameterized by
some unit vector u such that we obtain scalars (x0 · u)u for each sample x0. What is the residual
error of this projection?

2. To choose u such that it retains as much information about X as possible, we optimally want
different points xi, xj to map to different projections, in other words, ensure a high variance of
projected points. Find the unit vector wTw = 1 that maximizes the variance σ2

u of the projected
points (xi · u)u. Hint: Use Lagrangean multipliers to include the unit constraint.

3. Interpret how your result u relates to the covariance matrix cov(X) ∈ Rp×p.

The above can be generalized to the case d > 1 by projecting to multiple orthogonal vectors {u1, ..., ud}.
1. Devise an iterative way of obtaining {u2, ..., ud} starting from u1 obtained from the previous part.

Using the resulting ui, describe (on a high level) how to implement a lower-dimensional regression.

2. Another way to obtain {u1, ..., ud} is via the following factorization of X,

X = UΣWT

where Σ ∈ Rn×p is a diagonal matrix containing the so-called singular values of X, and where the
columns of U ∈ Rn×n, and V ∈ Rp×p are orthogonal unit vectors. Write XTX in terms of the
above decomposition. What are its eigenvalues and how are they related to Σ?

3. Consider the linear regression using the projected features, in comparison to ordinary least squares
using all features. Mention the advantages that you see. Do you also see a potential problem?
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