# Recap <br> Lecture 2 Linear Regression <br> ISLR 3, ESL 3 

Krikamol Muandet
Jilles Vreeken


## Recap (Lecture 2)

- Simple Linear Regression
- Assessing the goodness of fit
- Multiple Linear Regression


## Recap (Lecture 2)

- Simple Linear Regression
" Looking for linear relationships between a predictor (e.g. TV ads) and outcome (e.g. sales)
- Estimating the linear coefficients: least-square fit
" Gauss-Markov theorem: among all unbiased linear estimators, the least-square fit is the one with the smallest variance
- Assessing the goodness of fit
- Multiple Linear Regression


## Looking for Linear Relationships: Coefficients



Linear fit of the advertising data appears appropriate for all but the smallest advertising budgets

## Looking for Linear Relationships: Errors



$$
R S S=e_{1}^{2}+e_{2}^{2}+\ldots+e_{n}^{2}=\left(y_{1}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}\right)\right)^{2}+\left(y_{2}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{2}\right)\right)^{2}+\ldots+\left(y_{n}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{n}\right)\right)^{2}
$$

## Estimating the linear coefficients

Minimizing the RSS for a single predictor $X$, we obtain

$$
\begin{array}{ll}
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} & \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} \\
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} & \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{array}
$$

## Gauss-Markov Theorem

- The least-square fit is an unbiased estimate for the population regression line
- Among all unbiased linear estimators, the least-square fit is the one with smallest variance



## Recap (Lecture 2)

- Simple Linear Regression
- Assessing the goodness of fit
- Standard Error: How accurately does least-squares estimate the population coefficients?
- Confidence Intervals \& Hypothesis Testing: How confident are we about the estimates?
" Other Scores: RSS, R2 and Correlation
- Multiple Linear Regression


## Confidence Intervals



Linear fit of the advertising data appears appropriate for all but the smallest advertising budgets

## Confidence Intervals \& Hypothesis Testing

We can determine the probability that $|t|$ exceeds a certain value from the figure on the right

- for $|t|>2$ it is roughly $5 \%$
- this probability is called the $p$-value

If a $p$-value is small, it is unlikely that the observed association of input and output is due to chance

- a $p$-value of $5 \%$ means that, if the null-hypothesis holds, an
 equal or better result will happen in at most $5 \%$ of all datasets
- we reject the null hypothesis at a significance level $\alpha$ if the $p$-value $\leq \alpha$

Typical significance levels $\alpha$ for rejecting the null hypothesis are 5\% and 1\%

- the figure shows the values for $n=30$


## Recap (Lecture 2)

- Simple Linear Regression
- Assessing the goodness of fit
- Multiple Linear Regression
" Looking for linear relationships between multiple predictors and an outcome
- Estimating the linear coefficients: least-square fit in the multivariate case


## Looking for Linear Relationships: univariate vs. multivariate





Univariate regression
For each value of the considered input, ignore the values of all other features

Multivariate regression
For each value of the considered input, keep the values of all other features fixed

## Estimating the linear coefficients: univariate vs. multivariate

- Minimizing the RSS for a single predictor $X$, we obtain

$$
\begin{array}{ll}
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} & \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} \\
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} & \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{array}
$$

- For multivariate $\mathbf{X}$, we obtain (assuming that $\mathbf{X}^{T} \mathbf{X}$ is positive definite, i.e. for all $a \in \mathbb{R}_{n}, a^{T} \mathbf{X}^{T} \mathbf{X} a>0$ ):

$$
\hat{\beta}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} Y
$$

Univariate regression
For each value of the considered input, ignore the values of all other features

Multivariate regression
For each value of the considered input, keep the values of all other features fixed

