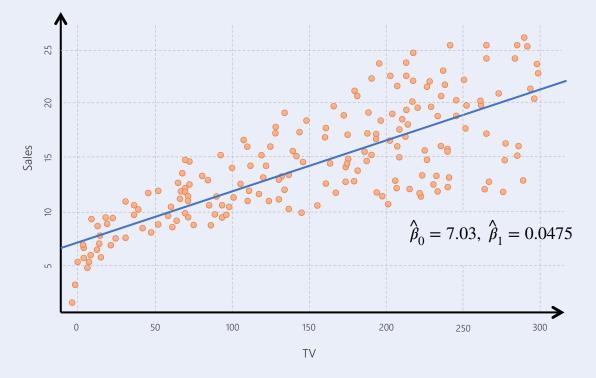
Recap Lecture 2 Linear Regression ISLR 3, ESL 3

Krikamol Muandet Jilles Vreeken

- Simple Linear Regression
- Assessing the goodness of fit
- Multiple Linear Regression

- Simple Linear Regression
 - Looking for linear relationships between a predictor (e.g. TV ads) and outcome (e.g. sales)
 - Estimating the linear coefficients: least-square fit
 - Gauss-Markov theorem: among all unbiased linear estimators, the least-square fit is the one with the smallest variance
- Assessing the goodness of fit
- Multiple Linear Regression

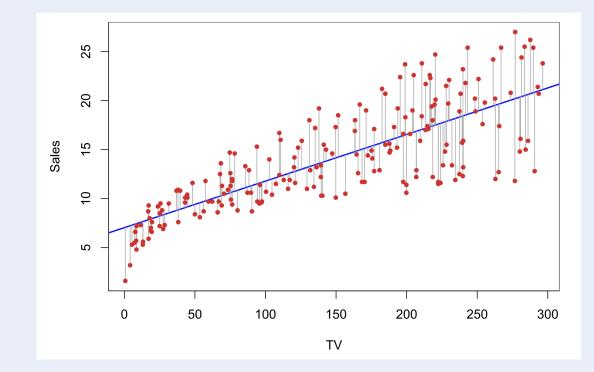
Looking for Linear Relationships: Coefficients



Linear fit of the advertising data appears appropriate for all but the smallest advertising budgets

Looking for Linear Relationships: Errors

II



$$RSS = e_1^2 + e_2^2 + \dots + e_n^2 = \left(y_1 - (\hat{\beta}_0 + \hat{\beta}_1 x_1)\right)^2 + \left(y_2 - (\hat{\beta}_0 + \hat{\beta}_1 x_2)\right)^2 + \dots + \left(y_n - (\hat{\beta}_0 + \hat{\beta}_1 x_n)\right)^2$$

Estimating the linear coefficients

Minimizing the RSS for a single predictor X, we obtain

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x} \qquad \bar{y} = \frac{1}{n}\sum_{i=1}^{n} y_{i}$$

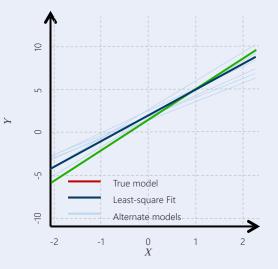
$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \qquad \bar{x} = \frac{1}{n}\sum_{i=1}^{n} x_{i}$$

Gauss-Markov Theorem

The least-square fit is an unbiased estimate for the population regression line

Π

 Among all unbiased linear estimators, the least-square fit is the one with smallest variance

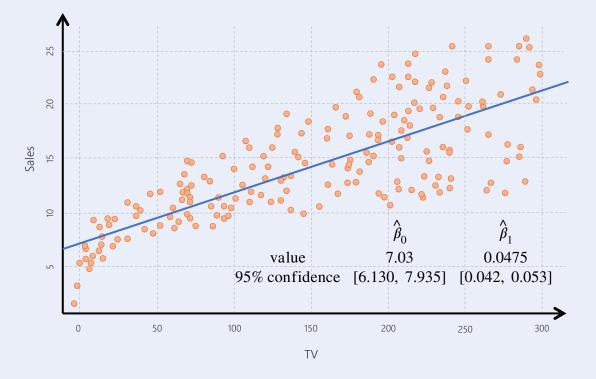


Simple Linear Regression

- Assessing the goodness of fit
 - Standard Error: How accurately does least-squares estimate the population coefficients?
 - Confidence Intervals & Hypothesis Testing: How confident are we about the estimates?
 - Other Scores: RSS, R2 and Correlation
- Multiple Linear Regression

Confidence Intervals

Π



Linear fit of the advertising data appears appropriate for all but the smallest advertising budgets

Confidence Intervals & Hypothesis Testing

We can determine the probability that |t| exceeds a certain value from the figure on the right

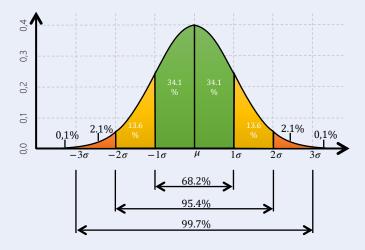
- for |t| > 2 it is roughly 5%
- this probability is called the *p*-value

If a *p*-value is small, it is unlikely that the observed association of input and output is due to chance

- a *p*-value of 5% means that, if the null-hypothesis holds, an equal or better result will happen in at most 5% of all datasets
- we reject the null hypothesis at a significance level α if the *p*-value $\leq \alpha$

Typical significance levels α for rejecting the null hypothesis are 5% and 1%

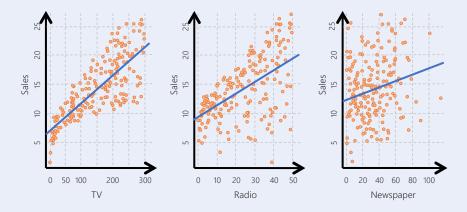
• the figure shows the values for n = 30



- Simple Linear Regression
- Assessing the goodness of fit
- Multiple Linear Regression

- Looking for linear relationships between multiple predictors and an outcome
- Estimating the linear coefficients: least-square fit in the multivariate case

Looking for Linear Relationships: univariate vs. multivariate



Univariate regression

For each value of the considered input, ignore the values of all other features

	Coefficient	Std. error	-statistic	-value
intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

Π

Multivariate regression

For each value of the considered input, keep the values of all other features fixed

Estimating the linear coefficients: univariate vs. multivariate

• Minimizing the RSS for a single predictor *X*, we obtain

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{x} \qquad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$
$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

Univariate regression

For each value of the considered input, ignore the values of all other features

• For multivariate **X**, we obtain (assuming that $\mathbf{X}^T \mathbf{X}$ is positive definite, i.e. for all $a \in \mathbb{R}_n$, $a^T \mathbf{X}^T \mathbf{X} a > 0$):

$$\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Π

Multivariate regression

For each value of the considered input, keep the values of all other features fixed