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Four Important Questions

1. Is at least one predictor useful?

2. Which subset of predictors is useful?

3. How well does the model fit the data?

4. How accurately can we predict the response?
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Question Is at Least one Predictor Useful?

To tell whether at least one predictor is useful we have to test
§ 𝐻!: 𝛽" = 𝛽# = ⋯ = 𝛽$ = 0 vs.     𝐻%: at least one 𝛽& is non-zero
§ we can test this using the 𝐹-statistic

𝐹 =
⁄𝑇𝑆𝑆 − 𝑅𝑆𝑆 𝑝

⁄𝑅𝑆𝑆 𝑛 − 𝑝 − 1

§ under linear assumptions, we have E ⁄𝑅𝑆𝑆 𝑛 − 𝑝 − 1 = 𝜎!

§ if 𝐻! is true then E ⁄𝑇𝑆𝑆 − 𝑅𝑆𝑆 𝑝 = 𝜎!

else E ⁄𝑇𝑆𝑆 − 𝑅𝑆𝑆 𝑝 > 𝜎!

The 𝐹-statistic is 1 if 𝐻- is true, and greater than 1 otherwise
§ for the advertising data, the 𝐹-statistic is 570
§ in general, the 𝐹-statistic follows an 𝐹-distribution
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Question Which Subset of Predictors is Useful?

To test subsets of predictors we can again define a hypothesis test
§ i.e. we can test whether features are useful in addition to some set of predictors
§ 𝐻!: 𝛽$'()" = 𝛽$'()# = ⋯ = 𝛽$ = 0, i.e. we test if the last 𝑞 predictors in the list are (un)informative

The corresponding 𝐹-statistic is

𝐹 = ⁄.//*0.// 1
⁄.// 20304

§ 𝑅𝑆𝑆! is the RSS of a model that includes
all except the last 𝑞 variables

The reported 𝑡-statistics in the table are the square-roots of the 𝐹-statistic
§ they measure the added effect of that variable when all other variables are included in the model
§ e.g. newspaper	adds no effect to a model that includes both TV	and radio
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Coefficient Std. error 𝑡-statistic 𝑝-value

intercept 2.939 0.3119 9.42 <0.0001

TV 0.046 0.0014 32.81 <0.0001

radio 0.189 0.0086 21.89 <0.0001

newspaper -0.001 0.0059 -0.18 0.8599



What if we have many predictors to choose from?

In high-dimensional settings we cannot restrict ourselves to 𝑝-values of individual variables
§ assume 𝐻!: 𝛽" = 𝛽# = ⋯ = 𝛽$ = 0 with 𝑝 = 100 to be true
§ we generate a random response, so, no variable is associated with it
§ we are practically guaranteed to find a result with a ‘significant’ result
§ due to multiple testing just by chance 5% of the 𝑝-values will be below 5%
§ the 𝒕-statistic does not adjust for number of predictors, but the 𝑭-statistic does

If 𝑝 > 𝑛 this does not help, as we have too few observations to fit all parameters
§ oh noes, what now? wait till Chapter 6
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Preview Selecting Important Variables

Often, the outcome is only dependent on a few variables
§ finding those variables is the variable selection or feature selection problem
§ Chapter 6 discusses this in detail. Here we give a preview. 
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Preview Selecting Important Variables

Best subset selection
Try all subsets of variables, here
§ {}, {TV},{radio},{newspaper},

{TV, radio},{TV, newspaper},
{radio, newspaper},
{TV, radio, newspaper}

§ there are 2$ subsets
§ 𝑝 = 30: 2+! = 1,073,741,824 models

How does one rate the 
performance of a model?
§ not via the training error!
§ need methods to assess test error
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Mixed Selection
§ begin with the null model over no variables 
§ add variables to the model until the added 

variable becomes insignificant
§ remove variables until there is no insignificant 

variable in the model
§ continue until all variables in the model are 

significant, and all variables outside are not

Preview Selecting Important Variables

Forward Selection
§ begin with the null model over no variables 
§ fit 𝑝 models, one with each single variable
§ select the model with lowest 𝑅𝑆𝑆
§ try adding all of the remaining 

𝑝 − 1 variables into this model
§ pick the one with the lowest 𝑅𝑆𝑆
§ continue, until a stopping criterion is fulfilled

Backward selection
§ begin with the full model over all variables
§ remove the variable with the largest 𝑝-value 

according to the 𝐹-statistic
§ continue, until a stopping criterion is fulfilled
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Question How Well Does the Model Fit the Data?

The most common numerical measures for model fit are 𝑅𝑆𝐸 and 𝑅5

§ for univariate regression,      𝑅# = 𝐶𝑜𝑟 𝑋, ?𝑌
#

§ for multivariate regression,   𝑅# = 𝐶𝑜𝑟 𝑌, ?𝑌
#

§ among all linear models the full linear model maximizes correlation 

𝑅5 monotonically increases when we add variables
§ even if these are only weakly associated with the output
§ really, we need to consider test error (Chapter 5)
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𝑅𝑆𝐸 𝑅𝟐 𝐹-statistic

Full Model 1.681 0.8972 570

TV, radio 1.686 0.89719

TV 3.26 0.612 312.6

Inspect the data!

Inspection shows that there 
is nonlinearity in the 
advertising data
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Even when we know the true relationship, 
we can never remove the irreducible error 
§ confidence intervals relate to the variability 

of an estimate over many inputs
§ prediction intervals relate to the variability 

of an estimate for a given input
§ prediction intervals are hence always wider 

than the confidence intervals 
§ for example, on the advertising data

g 𝐓𝐕 = $100,000, 𝐫𝐚𝐝𝐢𝐨 = $20,000
g 95%-confidence interval

𝐬𝐚𝐥𝐞𝐬 ∈ [10985, 11528]
g 95%-prediction interval

𝐬𝐚𝐥𝐞𝐬 ∈ [7930, 14580]

Question How Accurately can we Predict?

1. Predict outcome based on trained linear model
1. inaccuracy of coefficient estimates 

are related to the reducible error
2. we compute confidence intervals for 

coefficients and for the output
2. When the relationship between input and 

output is non-linear, any linear model will incur 
a bias and the reducible error can be further 
reduced with a non-linear model!
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ISLR 3.3
Beyond Simple and Additive
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How to Include Qualitative Predictors

Example Credit dataset (𝑛 = 400)
§ output 𝐛𝐚𝐥𝐚𝐧𝐜𝐞
§ quantitative predictors

g age in years
g cards # credit cards
g education years of education
g income annual, in K$
g limit credit card limit
g rating credit rating

§ qualitative predictors
g gender male/female
g student yes/no
g status married/not married
g region 3 values
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Alternatively, we can also code as

𝑥& = H 1 if 𝑖th person is female
−1 if 𝑖th person is male

which would give a model

𝑦& = H𝛽! + 𝛽" + 𝜖& if 𝑖th person is female
𝛽! − 𝛽" + 𝜖& if 𝑖th person is male

where 𝛽! is the avg credit over all

The choice of coding changes the interpretation of 
the coefficients but not the regression result

How to Include Qualitative Predictors

Binary Predictors
§ just add a dummy variable, e.g.

𝑥& = H
1 if 𝑖th person is female
0 if 𝑖th person is male

§ which results in a model
𝑦& = 𝛽! + 𝛽"𝑥& + 𝜖&

= H𝛽! + 𝛽" + 𝜖& if 𝑖th person is female
𝛽! + 𝜖& if 𝑖th person is male

§ 𝛽! average credit balance for males
§ 𝛽! + 𝛽" avg credit balance for females
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Coefficient Std. error 𝑡-statistic 𝒑-value

intercept 509.80 33.13 15.389 <0.0001

gender 19.73 46.05 0.429 0.6690



One dummy less than the number of values
§ 𝛽! avg balance for East (base line)
§ 𝛽! + 𝛽" avg balance for South
§ 𝛽! + 𝛽# avg balance for West

Testing significance
§ 𝐻!: 𝛽" = 𝛽# = 0, and we use the 𝐹-statistic
§ we can mix quantitative and qualitative 

predictors
§ we get very high 𝑝-values, there is no evidence 

to reject the null hypothesis

How to Include Qualitative Predictors

Multiway Predictors (here 3 way)

§ use multiple dummy variables

𝑥&" = H1 if 𝑖th person from the South
0 if 𝑖th person is not from the South

𝑥&# = H1 if 𝑖th person is from the West
0 if 𝑖th person is not from the West

§ which results in a model
𝑦& = 𝛽! + 𝛽"𝑥& + 𝛽#𝑥& + 𝜖&

= C
𝛽2 + 𝛽3 + 𝜖4 if 𝑖th person is from the South
𝛽2 + 𝛽5 + 𝜖4 if 𝑖th person is from the West
𝛽2 + 𝜖4 if 𝑖th person is from the East
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Coefficient Std. error 𝑡-statistic 𝒑-value

intercept 531.00 46.32 11.464 <0.0001

region[South] -18.69 65.02 -0.287 0.7740

region[West] -12.50 56.68 -0.221 0.8260



How to Account for Interactions

Often, additivity does not hold
§ e.g. advertising on radio can increase the 

effectiveness of TV advertising (synergy) 
§ the figure shows that the two variables interact
§ when levels of either TV or radio are low then sales are 

lower than the linear model suggests
§ we can account for this by adding an interaction term

For example, we can assume
𝑌 = 𝛽! + 𝛽"𝑋" + 𝛽#𝑋# + 𝛽+𝑋"𝑋# + 𝜖

§ where the interaction can be seen as rewriting the model as
𝑌 = 𝛽! + 𝛽" + 𝛽+𝑋# 𝑋" + 𝛽#𝑋# + 𝜖
= 𝛽! + ]𝛽4𝑋4 + 𝛽5𝑋5 + 𝜖
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Example Beyond Additivity

𝐬𝐚𝐥𝐞𝐬 = 𝛽! + 𝛽"×𝐓𝐕 + 𝛽#×𝐫𝐚𝐝𝐢𝐨 + 𝛽+× 𝐫𝐚𝐝𝐢𝐨×𝐓𝐕 + 𝜖
= 𝛽! + 𝛽" + 𝛽+×𝐫𝐚𝐝𝐢𝐨 ×𝐓𝐕 + 𝛽#×𝐫𝐚𝐝𝐢𝐨 + 𝜖

Strong evidence for 𝐻%: 𝛽+ ≠ 0
§ 𝛽+: increase in effectiveness of TV	advertising per unit increase in radio	advertising
§ 𝑅# = 89.7% for the model without the interaction term
§ 𝑅# = 96.8% for the model with the interaction term
§ (96.8 − 89.7)/(100 − 89.7) = 69% of the unexplained variability is explained by the interaction term
§ all terms are significant
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Coefficient Std. error 𝑡-statistic 𝑝-value

intercept 6.7502 0.248 27.23 <0.0001

TV 0.0191 0.002 12.70 <0.0001

radio 0.0289 0.009 3.24 0.0014

𝐓𝐕×𝐫𝐚𝐝𝐢𝐨 0.0011 0.000 20.73 <0.0001



Accounting for Mixed-Type Interactions

Example credit data with output balance	and 
inputs income (quantitative) and student (qualitative)

Base model

§ forms two parallel lines
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𝐛𝐚𝐥𝐚𝐧𝐜𝐞* = 𝛽+ + 𝛽'×𝐢𝐧𝐜𝐨𝐦𝐞* + H
𝛽! if the 𝑖th person is a student
0 if the 𝑖th person is not a student

= 𝛽'×𝐢𝐧𝐜𝐨𝐦𝐞* + H
𝛽+ + 𝛽! if the 𝑖th person is a student
𝛽+ if the 𝑖th person is not a student



Accounting for Mixed-Type Interactions

Example credit data with output balance	and 
inputs income (quantitative) and student (qualitative)

Interaction model

§ interaction term allows for different slopes of the two lines
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Nonlinear Relationships

We can include non-linearities into linear regression by 
considering nonlinear functions of the inputs as 
features
§ the functions over inputs are called base functions
§ in polynomial regression we consider polynomials over the 

inputs as base functions, e.g. 𝑋&# or 𝑋&,#

Example Mileage dataset
§ Output, miles per gallon of gas (mpg)
§ 397 samples, here we consider input horsepower
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𝑅5

linear 0.606
quadratic 0.688

Polynomial 
regression of 
degree 5 overfits

𝐦𝐩𝐠 = 𝛽+ + 𝛽'×𝐡𝐨𝐫𝐬𝐞𝐩𝐨𝐰𝐞𝐫
+𝛽!×𝐡𝐨𝐫𝐬𝐞𝐩𝐨𝐰𝐞𝐫! + 𝜖

𝐡𝐨𝐫𝐬𝐞𝐩𝐨𝐰𝐞𝐫
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Coefficient Std. error 𝑡-statistic 𝑝-value

intercept 56.9001 1.8004 31.6 <0.0001

horsepower -0.4662 0.0311 -15.0 <0.0001

𝐡𝐨𝐫𝐬𝐞𝐩𝐨𝐰𝐞𝐫𝟐 0.0012 0.0001 10.1 <0.0001



ISLR 3.3.3
Regression Pitfalls

20II



Problem 1 Nonlinearity

If the true relationship is nonlinear, any linear model 
will be inexact and lead to wrong interpretations
§ residual plots can help identify nonlinearity

Plot residual error against the fitted output value
§ linear model: U-shape is indicative of non-linear relationship
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Problem 1 Nonlinearity

If the true relationship is nonlinear, any linear model 
will be inexact and lead to wrong interpretations
§ residual plots can help identify nonlinearity

Plot residual error against the fitted output value
§ linear model: U-shape is indicative of non-linear relationship
§ quadratic model: curve is flatter, fits the data better 
§ not perfect, perhaps we should try other base functions…
§ Chapter 7 details nonlinear models
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Residual	plot	for	quadratic	fit	of
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Problem 2 Correlation of Error Terms

The theory of linear models assumes that the errors 𝜖4, 𝜖5, … , 𝜖2 are uncorrelated
§ if they are correlated, standard errors will be larger than given by the formulas
§ confidence and prediction intervals should then be wider and 𝑝-values should be higher
§ parameters that seem statistically significant, may not be

For example, assume we duplicate our data
§ ignoring correlation of errors, we now have a sample of size 2𝑛
§ our coefficients would be the same, but our confidence intervals are narrower by a factor 2

𝑆𝐸 𝜇̂ = 𝑉𝑎𝑟 𝜇̂ = ⁄𝜎# 𝑛

Errors are frequently (positively) correlated
§ e.g. adjacent time points in temporal data
§ always check for correlated errors, by correlation analysis or by plotting them
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Problem 3 Heteroscedasticity

Requiring that 𝑉𝑎𝑟 𝜖a = 𝜎5 is constant is another central 
assumption in the theory on linear models
§ often the variance of the error depends on the response
§ changing variance is called heteroscedasticity
§ can be seen as a funnel shape in the residual plot
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Response	𝑌
Red	line	is	the	moving	average

Blue	lines	delineate	outer	quantiles	of	the	plot
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Problem 3 Heteroscedasticity

Requiring that 𝑉𝑎𝑟 𝜖a = 𝜎5 is constant is another central 
assumption in the theory on linear models
§ often the variance of the error depends on the response
§ changing variance is called heteroscedasticity
§ can be seen as a non-uniform shape in the residual plot
§ can (often) be dealt with by transforming the response 

using a concave function

If we know how the variance depends on the response 
we can weigh observations to even out the variance
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Problem 4 Outliers

Outliers are points whose outcome is far from prediction
§ residuals can identify outliers
§ when is a residual large enough to call a point an outlier? 
§ studentized residuals: divide residuals by its estimated standard 

error
§ if absolute studentized residual is >3 a point is an outlier
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Problem 5 High Leverage Points

Points with unusual (unlikely) input values 𝑥a
§ for example, point 41 in the figure 
§ high leverage points have large impact on the regression line
§ important to identify (and potentially remove) these points
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Problem 5 High Leverage Points

Points with unusual (unlikely) input values 𝑥a
§ for example, point 41 in the figure 
§ high leverage points have large impact on the regression line
§ important to identify (and potentially remove) these points

Identifying high leverage points is difficult in high-dimensions
§ thus we compute and use the leverage statistic
§ for univariate data

ℎ& =
1
𝑛
+

𝑥& − 𝑥̅ #

∑&G-"
. 𝑥&G − 𝑥̅ #
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Problem 5 High Leverage Points

Points with unusual (unlikely) input values 𝑥a
§ for example, point 41 in the figure 
§ high leverage points have large impact on the regression line
§ important to identify (and potentially remove) these points

Identifying high leverage points is difficult in high-dimensions
§ thus we compute and use the leverage statistic
§ for univariate data

ℎ& =
1
𝑛
+

𝑥& − 𝑥̅ #

∑&G-"
. 𝑥&G − 𝑥̅ #

§ for multivariate data
ℎ&& is the 𝑖th diagonal element of the hat matrix 𝐇, 
which effectively tells us the influence of 𝑦& on w𝑦&
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Problem 6 Collinearity

Two related predictors are called collinear
§ they can substitute for each other 
§ i.e. trade parts of their coefficients
§ results in large variance in the model

In the credit data
§ rating and limit are collinear; age and limit are not
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Problem 6 Collinearity

We can detect pairwise collinearity by looking at the correlation matrix of the predictors
§ collinearity among larger sets of predictors (multi-colinearity) cannot be seen this way!
§ the variance of a coefficient decomposes as

𝑉𝑎𝑟 y𝛽/ =
𝜎#

𝑛 − 1 𝑉𝑎𝑟 𝑋/
𝑉𝐼𝐹 y𝛽/

§ where VIF stands for the variance inflation factor

𝑉𝐼𝐹 y𝛽/ =
1

1 − 𝑅0I|0JI
#

§ 𝑉𝐼𝐹 = 1 if there is no collinearity, larger otherwise, where a 𝑉𝐼𝐹 ≥ 5 or 𝑉𝐼𝐹 ≥ 10 indicates a problem

How to handle collinearity
1. drop problematic variable from the data

g in the example, dropping rating	reduces all VIFs to ≈ 1 while 𝑅! drops only from 0.754 to 0.75
2. combine the collinear variables into a single predictor, e.g. by averaging

(the book is sparse on this topic, see https://en.wikipedia.org/wiki/Variance_inflation_factor for more details)II 31

𝑉𝐼𝐹
age 1.01
rating 160.67
limit 160.59

𝑅5 of regressing 
𝑋K on all other 𝑋4

https://en.wikipedia.org/wiki/Variance_inflation_factor
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𝑘-NN Regression

𝑘-NN regression
y𝑓 𝑥! =

1
𝑘
~
2L∈𝒩M

𝑦&

§ optimal value of 𝑘 depends on the bias-variance tradeoff

Small values of 𝑘 leads to complex models
§ high variance: single point can strongly affect the model

II 33

𝑘 = 1



𝑘-NN Regression

𝑘-NN regression
y𝑓 𝑥! =

1
𝑘
~
2L∈𝒩M

𝑦&

§ optimal value of 𝑘 depends on the bias-variance tradeoff

Small values of 𝑘 leads to complex models (likely to overfit)
§ high variance: single point can strongly affect the model

Large values of 𝑘 leads to simple models (likely to underfit)
§ high bias: model becomes too smooth

Optimal value of 𝑘 can be found by estimating the test error (Ch. 5)

II 34

𝑘 = 9



Comparing 𝑘NN and Linear Models

Which model should we use?
§ the one that mimics the data (reality!) best

Linear Models
§ assume the whole world is linear (parametric) 

§ linear models are easily interpretable and provide 𝑝-values

𝑘-NN Models
§ assume the world is locally constant 
§ non-parametric, at least for small 𝑘
§ adding noise variables upsets 𝑘-NN more than linear models
§ in high dimensions every point is far away (curse of dimensionality)

II 35
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𝒌NN vs. Linear on Linear Data
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𝑘-NN	fit
linear	least-squares	fit
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𝒌NN vs. Linear on Mildly Non-Linear Data
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𝒌NN vs. Linear on Non-Linear Data
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𝑘 = 1
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