Recap Lecture 3 Linear Regression II ISLR 3, ESL 3

- Usefulness of Predictors
- Beyond Additivity
- Regression Pitfalls
- kNN Regression

- Usefulness of Predictors
 - Is at least one predictor useful?
 - Which subset of predictors are useful? (preview, covered in a coming lecture)

Usefulness of predictors: any?

	Coefficient	Std. error	-statistic	-value
intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

 $\beta \approx 0 \rightarrow$ Probably not a useful predictor

Usefulness of predictors: any?

	Coefficient	Std. error	-statistic	-value
intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

 $\beta \approx 0 \rightarrow$ Probably not a useful predictor

• Hypothesis Testing: is there at least one predictor with $\beta \neq 0$?

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_p = 0$$
 vs. $H_a:$ at least one β_i is non-zero

Usefulness of predictors: which?

	Coefficient	Std. error	-statistic	-value
intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

{}, {TV},{radio},{newspaper},
{TV, radio},{TV, newspaper},
{radio, newspaper},
{TV, radio, newspaper}

Subset Selection Techniques

- Usefulness of Predictors and Model
- Beyond Additivity
 - Interactions between predictors
 - Nonlinear relationship between predictor and target (preview, covered in a coming lecture)

Interactions between predictors

	Coefficient	Std. error	-statistic	-value
intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	<0.0001
radio	0.0289	0.009	3.24	0.0014
radio × TV	0.0011	0.000	20.73	<0.0001

Interaction terms as additional predictors

sales = $\beta_0 + \beta_1 \times \mathbf{TV} + \beta_2 \times \mathbf{radio} + \beta_3 \times (\mathbf{radio} \times \mathbf{TV}) + \epsilon$ = $\beta_0 + (\beta_1 + \beta_3 \times \mathbf{radio}) \times \mathbf{TV} + \beta_2 \times \mathbf{radio} + \epsilon$

Nonlinear relationship between predictor and target

	Coefficient	Std. error	-statistic	-value
intercept	56.9001	1.8004	31.6	<0.0001
horsepower	-0.4662	0.0311	-15.0	<0.0001
horsepower ²	0.0012	0.0001	10.1	<0.0001

Polynomial terms as additional predictors

 $\mathbf{mpg} = \beta_0 + \beta_1 \times \mathbf{horsepower} \\ + \beta_2 \times \mathbf{horsepower}^2 + \epsilon$

- Usefulness of Predictors and Model
- Beyond Additivity
- Regression Pitfalls
 - Nonlinearity
 - Correlated noise
 - Dependent noise (heteroskedasticity)
 - Dependent predictors (collinearity)
 - Outliers and high-leverage points

Which residual plot shows a case of nonlinearity?

What pitfall of regression is illustrated here?

Which predictors (red) and coefficients (blue) are collinear?

How do the two kNN plots differ?

