Recap 4 Classification

Jilles Vreeken
Krikamol Muandet

Classification Overview

In classification, we want to predict categorical outputs
Example will someone pay back their loan? yes or no?

- inputs: annual income, monthly balance, student status

Why not just do linear regression?

Linear regression can actually work for binary classification

- simply code $Y= \begin{cases}0 & \text { if green } \\ 1 & \text { if red }\end{cases}$

Problems:

- Does not generalize to more than two classes
- $Y=\left\{\begin{array}{ll}0 & \text { if green } \\ 1 & \text { if red } \\ 2 & \text { if blue }\end{array}\right.$ or $Y= \begin{cases}0 & \text { if red } \\ 1 & \text { if blue } \\ 2 & \text { if green }\end{cases}$

- each imposes a different ordering, and different distances between classes

Logistic Regression

Example Credit default data

- univariate model, e.g.

$$
\operatorname{Pr}(\text { default }=\text { yes } \mid \text { balance })
$$

- simple linear regression models this as

$$
f(X)=\beta_{0}+\beta_{1} X_{1}
$$

- which leads to values outside $[0,1]$

We can map these into $[0,1]$ using the logistic function

$$
\begin{gathered}
\text { probability that } \\
Y=\text { yes }=1
\end{gathered} \longrightarrow p(X)=\frac{e^{\beta_{0}+\beta_{1} X}}{1+e^{\beta_{0}+\beta_{1} X}}
$$

- not only are all values now sensible, we also have the
odds ratio as $\frac{p(X)}{1-p(X)}=e^{\beta_{0}+\beta_{1} X}$, and the log-odds (logit) as $\log \left(\frac{p(X)}{1-p(X)}\right)=\beta_{0}+\beta_{1} X$

Example Single Continuous Predictor

If we increasing X by one unit, we

- Add β_{1} to the log-odds --> multiply the odds by $e^{\beta_{1}}$
- If $\beta_{1}>0$, adding X increases $p(X)$
- If $\beta_{1}<0$, adding X decreases $p(X)$

$$
\log \left(\frac{p(X)}{1-p(X)}\right)=\beta_{0}+\beta_{1} X \quad \frac{p(X)}{1-p(X)}=e^{\beta_{0}+\beta_{1} X} \quad p(X)=\frac{e^{\beta_{0}+\beta_{1} X}}{1+e^{\beta_{0}+\beta_{1} X}}
$$

Probabilities of default given balance

- For $\beta_{0}=-10.653$ and $\beta_{1}=0.0055$ (balance)

$$
\hat{p}(2000)=\frac{e^{-10.6513+0.0055 \times 2000}}{1+e^{-10.6513+0.0055 \times 2000}}=0.586
$$

- If we increase balance by 1 EUR , this
- Increases the log odds of defaulting by 0.0055
- Multiplies the odds of defaulting by $e^{0.0055}=1.0055 \%$

Example Single Binary Predictor

If we increasing X by one unit, we

- Add β_{1} to the log-odds --> multiply the odds by $e^{\beta_{1}}$
- If $\beta_{1}>0$, adding X increases $p(X)$
- If $\beta_{1}<0$, adding X decreases $p(X)$

$$
\log \left(\frac{p(X)}{1-p(X)}\right)=\beta_{0}+\beta_{1} X \quad \frac{p(X)}{1-p(X)}=e^{\beta_{0}+\beta_{1} X} \quad p(X)=\frac{e^{\beta_{0}+\beta_{1} X}}{1+e^{\beta_{0}+\beta_{1} X}}
$$

Probabilities of default given student

$$
\begin{aligned}
& \hat{p}(\text { student }=\text { yes })=\frac{e^{-3.5041+0.40409 \times 1}}{1+e^{-3.5041+0.40409 \times 1}}=0.00431 \\
& \hat{p}(\text { student }=\text { no })=\frac{e^{-3.5041+0.40409 \times 0}}{1+e^{-3.5041+0.40409 \times 0}}=0.00292
\end{aligned}
$$

- For $\beta_{0}=-3.5041$ and $\beta_{1}=0.4049$
- \rightarrow Being a student yields a higher prob. of defaulting!

Multiple Logistic Regression

The multivariate logistic regression model is defined as

- $\log \left(\frac{p(X)}{1-p(X)}\right)=\beta_{0}+\beta_{1} X+\cdots \beta_{p} X_{p} \quad$ with $\quad p(X)=\frac{e^{\beta_{0}+\beta_{1} X+\cdots+\beta_{p} X_{p}}}{1+e^{\beta_{0}+\beta_{1} X+\cdots+\beta_{p} X_{p}}}$

Example predicting default based on balance, income, and student

$$
\begin{aligned}
& \hat{p}(\text { student }=\text { yes, balance }=1,500, \text { income }=40)=\frac{e^{-10.869+0.00574 \times 1,500+0.003 \times 40-0.6468 \times 1}}{1+e^{-10.869+0.00574 \times 1,500+0.003 \times 40-0.6468 \times 1}}=0.058 \\
& \hat{p}(\text { student }=\text { no, balance }=1,500, \text { income }=40)=\frac{e^{-10.869+0.00574 \times 1,500+0.003 \times 40-0.6468 \times 0}}{1+e^{-10.869+0.00574 \times 1,500+0.003 \times 40-0.6468 \times 0}}=0.105
\end{aligned}
$$

Why is the student coefficient positive in the univariate and negative in the multivariate model?

Example Confounding in Logistic Regression

Why is the student coefficient positive in the univariate and negative in the multivariate model?

- confounding!
- students have higher balance
- students default at higher balance
- for a fixed value of balance and income, a student is less likely to default than a nonstudent!

ーー average default rate nonstudent

- $-\quad$ average default rate student
- nonstudent
- student

Fitting Logistic Regression Models

We usually fit a logistic regression model by maximum likelihood

- log-likelihood function $\ell(\theta)=\sum_{i=1}^{n} \log p_{g_{i}}\left(x_{i} ; \theta\right)$ and density function $p_{k}\left(x_{i}, \theta\right)=\operatorname{Pr}\left(G=k \mid X=x_{i} ; \theta\right)$
- for a binary problem, class coding $y_{i}=\left\{\begin{array}{l}1 \mid g_{i}=1 \\ 0 \mid g_{i}=0\end{array}\right.$ gives us $p_{1}(x ; \theta)=p(x ; \theta)$ and $p_{2}(x ; \theta)=1-p(x ; \theta)$

The log-likelihood then becomes

$$
e(\beta)=\sum_{i=1}^{n}\left\{y_{i} \log p\left(x_{i} ; \theta\right)+\left(1-y_{i}\right) \log \left(1-p\left(x_{i} ; \theta\right)\right)\right\}=\sum_{i=1}^{n}\left\{y_{i} \beta^{T} x_{i}-\log \left(1+e^{\beta^{T} x_{i}}\right)\right\}
$$

- where $\beta=\left\{\beta_{0}, \beta_{1}, \ldots\right\}$ and x_{i} a vector of the input values padded with a constant term $X_{0}=1$

