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Classification Overview

In classification, we want to predict categorical outputs

Example will someone pay back their loan? yes or no?
= inputs: annual income, monthly balance, student status
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Why not just do linear regression?

Linear regression can actually work for binary classification

0 ifgreen

= simply code Y = {1 i red

Problems:
= Does not generalize to more than two classes

0 ifgreen 0 ifred
2 ifblue 2 ifgreen

= each imposes a different ordering, and different distances between classes



Logistic Regression

Example Credit default data

= univariate model, e.g.
Pr(default = yes | balance)

= simple linear regression models this as
fX) = Bo + B X1

= which leads to values outside [0,1]

Probability Density

We can map these into [0,1] using the logistic function
eBotB1X

probability that
1 + eBotB1X

Y=yes=1 — < p(X) -

= not only are all values now sensible, we also have the
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odds ratio as L& = eBo+F1X | and the log-odds (logit) as log (—) = Po + P X
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Example Single Continuous Predictor

If we increasing X by one unit, we

= Add B; to the log-odds --> multiply the odds by ef1
= [fB; >0, adding X increases p(X)

» |f B; <0, adding X decreases p(X)

X
log <&> = Bo + f1X

& — eﬁ0+ﬁ1X
1-pX)

1-p(X)

Probabilities of default given balance

For By = —10.653 and B; = 0.0055 (balance)

—10.6513+0.0055%2000

. e
p(2000) = 1 + e-10.6513+0.0055x2000 0.586

If we increase balance by 1 EUR, this
Increases the log odds of defaulting by 0.0055
Multiplies the odds of defaulting by %0955 = 1,0055%

eﬁ0+ﬁlx
p(X) =

Probability Density
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Example Single Binary Predictor

If we increasing X by one unit, we
= Add B; to the log-odds --> multiply the odds by ef1
= |f 1 > 0, adding X increases p(X)
= |fB; <0, adding X decreases p(X)

] ( p(X)

_ P _ s, _
0g m)—ﬁo+ﬁ1x m—eﬁ X pX) =

eﬁ0+31X

Probabilities of default given student

e—3.504-1+0.4-04-09><1

p(student = yes) = 1 + o-3504140.40409x1 0.00431

e—3.504—1+0.404-09><0

p(student = no) = 1 + o-3.504140.40409X0 0.00292

=  For By = —3.5041 and B, = 0.4049
= - Being a student yields a higher prob. of defaulting!

1 + eBotB1X

(@)



Multiple Logistic Regression

The multivariate logistic regression model is defined as

oBo+B1X++BpXp

p(X) \ _ - —
= log (m) = Bo+ PrX + - BpXp,  with p(X) = PPN TET 2y ey oo

Example predicting default based on balance, income, and student

e —10.869+0.00574%1,500+0.003x40—-0.6468X1

p(student = yes, balance = 1,500, income = 40) = 1 + o 10:869+0.00574x1,500+0.003x40—0.6468X1

e —10.869+0.00574%1,500+0.003x40—0.6468X0

p(student = no, balance = 1,500, income = 40) = 1 + o-10:869+0.00574x1,500+0.003X40—0.6468X0

Why is the student coefficient positive in the univariate and
negative in the multivariate model?

= 0.058

= 0.105



Why is the student coefficient
positive in the univariate and

negative in the multivariate model?

confounding!
students have higher balance
students default at higher balance

for a fixed value of balance and
income, a student is less likely
to default than a nonstudent!
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Fitting Logistic Regression Models +

We usually fit a logistic regression model by maximum likelihood
= log-likelihood function €(6) = Xit;logpg, (x; 6) and density function pg(x;, 6) = Pr(G =k | X = x;;6)

= for a binary problem, class coding y; = {0 : gi = 0 gives us py(x; 8) = p(x; 0) and p,(x;60) = 1 — p(x; 0)

The log-likelihood then becomes
2(B) = Z{yl logp(x;;0) + (1 — y;) log(1 — p(x;; )} = z {viBTx; —log (1 + #™%1)}

= where g = {B,, 81, ...} and x; a vector of the input values padded with a constant term X, = 1

(ESL 4.4.7)
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