Recap 4

Classification

ISLP 4, ESL 4

Jilles Vreeken Krikamol Muandet

Classification Overview

In classification, we want to predict categorical outputs

Example will someone pay back their loan? yes or no?

inputs: annual income, monthly balance, student status

Why not just do linear regression?

Linear regression can actually work for binary classification

• simply code $Y = \begin{cases} 0 & \text{if green} \\ 1 & \text{if } red \end{cases}$

Problems:

Does not generalize to more than two classes

•
$$Y = \begin{cases} 0 & \text{if green} \\ 1 & \text{if red} \\ 2 & \text{if blue} \end{cases}$$
 or $Y = \begin{cases} 0 & \text{if red} \\ 1 & \text{if blue} \\ 2 & \text{if green} \end{cases}$

each imposes a different ordering, and different distances between classes

Logistic Regression

Example Credit default data

• univariate model, e.g.

Pr(**default** = yes | **balance**)

- simple linear regression models this as $f(X) = \beta_0 + \beta_1 X_1$
- which leads to values outside [0,1]

We can map these into [0,1] using the logistic function probability that Y = yes = 1 \longrightarrow $p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$

not only are all values now sensible, we also have the

odds ratio as
$$\frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_1 X}$$
, and the log-odds (logit) as $\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$

Example Single Continuous Predictor

If we increasing X by one unit, we

- Add β_1 to the log-odds --> multiply the odds by e^{β_1}
- If $\beta_1 > 0$, adding X increases p(X)
- If $\beta_1 < 0$, adding X decreases p(X)

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X \qquad \frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_1 X} \qquad p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1+e^{\beta_0 + \beta_1 X}}$$

Probabilities of **default** given **balance**

- For $\beta_0 = -10.653$ and $\beta_1 = 0.0055$ (balance) $\hat{p}(2000) = \frac{e^{-10.6513 + 0.0055 \times 2000}}{1 + e^{-10.6513 + 0.0055 \times 2000}} = 0.586$
- If we increase **balance** by 1 EUR, this
- Increases the log odds of defaulting by 0.0055
- Multiplies the odds of defaulting by $e^{0.0055} = 1.0055\%$

Example Single Binary Predictor

If we increasing X by one unit, we

- Add β_1 to the log-odds --> multiply the odds by e^{β_1}
- If $\beta_1 > 0$, adding X increases p(X)
- If $\beta_1 < 0$, adding X decreases p(X)

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X \qquad \frac{p(X)}{1-p(X)} = e^{\beta_0 + \beta_1 X} \qquad p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1+e^{\beta_0 + \beta_1 X}}$$

Probabilities of **default** given **student**

$$\hat{p}(\text{student} = \text{yes}) = \frac{e^{-3.5041 + 0.40409 \times 1}}{1 + e^{-3.5041 + 0.40409 \times 1}} = 0.00431$$

$$\hat{p}(\text{student} = \text{no}) = \frac{e^{-3.5041 + 0.40409 \times 0}}{1 + e^{-3.5041 + 0.40409 \times 0}} = 0.00292$$

- For $\beta_0 = -3.5041$ and $\beta_1 = 0.4049$
- \rightarrow Being a student yields a higher prob. of defaulting!

Multiple Logistic Regression

The multivariate logistic regression model is defined as

•
$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X + \cdots + \beta_p X_p$$
 with $p(X) = \frac{e^{\beta_0 + \beta_1 X + \cdots + \beta_p X_p}}{1+e^{\beta_0 + \beta_1 X + \cdots + \beta_p X_p}}$

Example predicting default based on balance, income, and student

$$\hat{p}(\text{student} = \text{yes}, \text{balance} = 1,500, \text{income} = 40) = \frac{e^{-10.869+0.00574\times1,500+0.003\times40-0.6468\times1}}{1+e^{-10.869+0.00574\times1,500+0.003\times40-0.6468\times1}} = 0.058$$
$$\hat{p}(\text{student} = \text{no}, \text{balance} = 1,500, \text{income} = 40) = \frac{e^{-10.869+0.00574\times1,500+0.003\times40-0.6468\times0}}{1+e^{-10.869+0.00574\times1,500+0.003\times40-0.6468\times0}} = 0.105$$

Why is the **student** coefficient positive in the univariate and negative in the multivariate model?

Example Confounding in Logistic Regression

Why is the **student** coefficient **positive** in the univariate and **negative** in the multivariate model?

- confounding!
- students have higher balance
- students **default** at higher **balance**
- for a fixed value of balance and income, a student is less likely to default than a nonstudent!

- -- average default rate nonstudent
- -- average default rate student
- nonstudent
- student

Fitting Logistic Regression Models

÷

We usually fit a logistic regression model by maximum likelihood

- log-likelihood function $\ell(\theta) = \sum_{i=1}^{n} \log p_{g_i}(x_i; \theta)$ and density function $p_k(x_i, \theta) = \Pr(G = k \mid X = x_i; \theta)$
- for a binary problem, class coding $y_i = \begin{cases} 1 \mid g_i = 1 \\ 0 \mid g_i = 0 \end{cases}$ gives us $p_1(x; \theta) = p(x; \theta)$ and $p_2(x; \theta) = 1 p(x; \theta)$

The log-likelihood then becomes

$$\ell(\beta) = \sum_{i=1}^{n} \{ y_i \log p(x_i; \theta) + (1 - y_i) \log (1 - p(x_i; \theta)) \} = \sum_{i=1}^{n} \{ y_i \beta^T x_i - \log (1 + e^{\beta^T x_i}) \}$$

• where $\beta = \{\beta_0, \beta_1, ...\}$ and x_i a vector of the input values padded with a constant term $X_0 = 1$