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Classification Overview
In classification, we want to predict categorical outputs

Example will someone pay back their loan? yes or no?
§ inputs: annual income, monthly balance, student status
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Linear regression can actually work for binary classification

§ simply code 𝑌 = # 0 if 𝐠𝐫𝐞𝐞𝐧
1 if 𝐫𝐞𝐝

Problems:
§ Does not generalize to more than two classes

§ 𝑌 = -
0 if 𝐠𝐫𝐞𝐞𝐧
1
2

if 𝐫𝐞𝐝
if 𝐛𝐥𝐮𝐞

or 𝑌 = -
0 if 𝐫𝐞𝐝
1
2

if 𝐛𝐥𝐮𝐞
if 𝐠𝐫𝐞𝐞𝐧

§ each imposes a different ordering, and different distances between classes

Why not just do linear regression?

IV

𝑥! "𝛽 > 0.5

𝑥! "𝛽 < 0.5
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Logistic Regression

Example Credit default	data
§ univariate model, e.g.

Pr(𝐝𝐞𝐟𝐚𝐮𝐥𝐭 = yes ∣ 𝐛𝐚𝐥𝐚𝐧𝐜𝐞)
§ simple linear regression models this as

𝑓 𝑋 = 𝛽! + 𝛽"𝑋"
§ which leads to values outside 0,1

We can map these into [0,1] using the logistic function

𝑝 𝑋 =
𝑒#"$##%

1 + 𝑒#"$##%

§ not only are all values now sensible, we also have the

odds ratio as & %
"'& %

= 𝑒#"$##% ,  and the log-odds (logit) as

IV

probability that
𝑌 = 𝐲𝐞𝐬 = 1 𝐛𝐚𝐥𝐚𝐧𝐜𝐞

Pr
ob

ab
ili

ty
 D

en
sit

y

0.
6

1.
0

0.
8

0.
2

5000 15001000

0.
0

25002000

0.
4

log
𝑝 𝑋

1 − 𝑝 𝑋
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Example Single Continuous Predictor

Probabilities of default	given balance
§ For 𝛽! = −10.653 and 𝛽" = 0.0055 (balance)

�̂� 2000 =
𝑒*+,../+01,.,,//×3,,,

1 + 𝑒*+,../+01,.,,//×3,,,
= 0. 586

§ If we increase balance by 1 EUR, this
§ Increases the log odds of defaulting by 0.0055
§ Multiplies the odds of defaulting by 𝑒!.!!$$ = 1.0055%

IV

𝐛𝐚𝐥𝐚𝐧𝐜𝐞
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If we increasing 𝑋 by one unit, we
§ Add 𝛽" to the log-odds --> multiply the odds by 𝑒%!
§ If 𝛽" > 0, adding 𝑋 increases 𝑝(𝑋)
§ If 𝛽" < 0, adding 𝑋 decreases 𝑝(𝑋)

log
𝑝 𝑋

1 − 𝑝 𝑋 = 𝛽! + 𝛽"𝑋	
𝑝 𝑋

1 − 𝑝 𝑋 = 𝑒%"&%!'	 𝑝 𝑋 =
𝑒%"&%!'

1 + 𝑒%"&%!'



Example Single Binary Predictor

Probabilities of default	given student

5𝑝 𝐬𝐭𝐮𝐝𝐞𝐧𝐭 = yes =
𝑒().$!*"&!.*!*!+×"

1 + 𝑒().$!*"&!.*!*!+×"
= 0.00431

5𝑝 𝐬𝐭𝐮𝐝𝐞𝐧𝐭 = no =
𝑒().$!*"&!.*!*!+×!

1 + 𝑒().$!*"&!.*!*!+×! = 0.00292

§ For 𝛽! = −3.5041 and 𝛽" = 0.4049
§ à Being a student yields a higher prob. of defaulting!
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Multiple Logistic Regression
The multivariate logistic regression model is defined as

§ log - '
"(- ' = 𝛽! + 𝛽"𝑋 +⋯𝛽-𝑋- with 𝑝 𝑋 = .#"$#!%$⋯$#'%'

"&.#"$#!%$⋯$#'%'

Example predicting 𝐝𝐞𝐟𝐚𝐮𝐥𝐭 based on 𝐛𝐚𝐥𝐚𝐧𝐜𝐞, 𝐢𝐧𝐜𝐨𝐦𝐞, and 𝐬𝐭𝐮𝐝𝐞𝐧𝐭

5𝑝 𝐬𝐭𝐮𝐝𝐞𝐧𝐭 = yes, 𝐛𝐚𝐥𝐚𝐧𝐜𝐞 = 1,500, 𝐢𝐧𝐜𝐨𝐦𝐞 = 40 =
𝑒("!./0+&!.!!$1*×",$!!&!.!!)×*!(!.0*0/×"

1 + 𝑒("!./0+&!.!!$1*×",$!!&!.!!)×*!(!.0*0/×" = 0.058

5𝑝 𝐬𝐭𝐮𝐝𝐞𝐧𝐭 = no, 𝐛𝐚𝐥𝐚𝐧𝐜𝐞 = 1,500, 𝐢𝐧𝐜𝐨𝐦𝐞 = 40 =
𝑒("!./0+&!.!!$1*×",$!!&!.!!)×*!(!.0*0/×!

1 + 𝑒("!./0+&!.!!$1*×",$!!&!.!!)×*!(!.0*0/×!
= 0.105
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Why is the student	coefficient  positive in the univariate and 
negative in the multivariate model?



Example Confounding in Logistic Regression

Why is the student	coefficient 
positive in the univariate and 
negative in the multivariate model?
§ confounding!
§ students have higher balance
§ students default at higher balance
§ for a fixed value of balance and 

income, a student is less likely 
to default than a nonstudent!
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Fitting Logistic Regression Models

We usually fit a logistic regression model by maximum likelihood
§ log-likelihood function ℓ 𝜃 = ∑34"5 log 𝑝6((𝑥3; 𝜃) and density function 𝑝7 𝑥3 , 𝜃 = Pr 𝐺 = 𝑘 𝑋 = 𝑥3; 𝜃

§ for a binary problem, class coding 𝑦3 = X 1 ∣ 𝑔3 = 1
0 ∣ 𝑔3 = 0 gives us 𝑝" 𝑥; 𝜃 = 𝑝 𝑥; 𝜃 and 𝑝8 𝑥; 𝜃 = 1 − 𝑝(𝑥; 𝜃)

The log-likelihood then becomes
ℓ 𝛽 =[

34"

5

𝑦3 log 𝑝(𝑥3; 𝜃) + 1 − 𝑦3 log 1 − 𝑝 𝑥3; 𝜃 =[
34"

5

𝑦3𝛽9𝑥3 − log 1 + 𝑒%):(

§ where 𝛽 = 𝛽!, 𝛽", … and 𝑥( a vector of the input values padded with a constant term 𝑋! = 1
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