Classification

Jilles Vreeken
Krikamol Muandet

Classification Overview

In classification, we want to predict categorical outputs
Example will someone pay back their loan? yes or no?

- inputs: annual income, monthly balance, student status

Linear Discriminant Analysis

Bayesian classification for K classes

- Use Bayes' formula to determine posterior density per class $\operatorname{Pr}(Y=k \mid X=x)$

$$
p_{k}(x)=\operatorname{Pr}(Y=k \mid X=x)=\frac{\pi_{k} f_{k}(x)}{\sum_{\ell=1}^{K} \pi_{\ell} f_{\ell}(x)}
$$

- Classify each point to its most probable class

Univariate LDA

- Assume each $f_{k}(x)$ is a univariate gaussian with the same variance
\rightarrow Bayesian classfier $p_{k}(x)=\frac{\pi_{k} f_{k}(x)}{\sum_{\ell=1}^{K} \pi_{\ell} f_{\ell}(x)} \propto \pi_{k} \frac{1}{\sqrt{2 \pi} \sigma_{k}} \exp \left(-\frac{1}{2 \sigma_{k}^{2}}\left(x-\mu_{k}\right)^{2}\right)$
- Discriminant: $\delta_{k}(x)=x \cdot \frac{\mu_{k}}{\sigma^{2}}-\frac{\mu_{k}^{2}}{2 \sigma^{2}}+\log \pi_{k}$
- Assign sample to class with the largest discriminator
- Decision boundary for two classes is the set of points for which the discriminator are equal

Multivariate LDA

Model assumptions

- each class is a multivariate Gaussian
- the covariance matrix is the same for all classes

$$
\begin{gathered}
f_{k(x)}=\frac{1}{(2 \pi)^{\frac{p}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(x-\mu_{k}\right)\right) \\
\delta_{k}(x)=x^{T} \boldsymbol{\Sigma}^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{T} \boldsymbol{\Sigma}^{-1} \mu_{k}+\log \pi_{k}
\end{gathered}
$$

- $\boldsymbol{\Sigma}$ is the $p \times p$ covariance matrix of the inputs $\boldsymbol{\Sigma}=\operatorname{Cov}(x)$
- model is fitted using sample estimates similar to the 1D case
- $\quad \mu$ easy, but $\boldsymbol{\Sigma}$ is the hardest to estimate

Multivariate Gaussian with two uncorrelated predictors

Multivariate Gaussian with two correlated predictors (0.7)

Quadratic Discriminant Analysis (QDA)

We give up the assumption that the covariances of all classes are all the same

For QDA we have
$f_{k(x)}=\frac{1}{(2 \pi)^{\frac{p}{2}\left|\Sigma_{k}\right|^{\frac{1}{2}}}} \exp \left(-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \boldsymbol{\Sigma}_{k}^{-1}\left(x-\mu_{k}\right)\right)$
$\delta_{k}(x)=-\frac{1}{2} x^{T} \boldsymbol{\Sigma}_{k}^{-1} x+x^{T} \boldsymbol{\Sigma}_{k}^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{T} \boldsymbol{\Sigma}_{k}^{-1} \mu_{k}+\log \pi_{k}$

- Discriminator is quadratic in x
- One covariance matrix per class
- \#parameters $K p(p+3) / 2$

For LDA we had
$f_{k(x)}=\frac{1}{(2 \pi)^{\frac{p}{2}|\Sigma|^{\frac{1}{2}}}} \exp \left(-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(x-\mu_{k}\right)\right)$
$\delta_{k}(x)=x^{T} \boldsymbol{\Sigma}^{-1} \mu_{k}-\frac{1}{2} \mu_{k}^{T} \boldsymbol{\Sigma}^{-1} \mu_{k}+\log \pi_{k}$

- Discriminator is linear in x
- One covariance matrix for all classes
- \#parameters $(2 K+p+1) p / 2$

Example LDA vs. QDA

Two-class problem with $\Sigma_{1}=\Sigma_{2}$
QDA overtrains

X_{1}

- . Bayes decision boundary
- LDA decision boundary
- QDA decision boundary

Two-class problem with $\Sigma_{1} \neq \Sigma_{2}$
LDA overtrains

X_{1}

- . Bayes decision boundary
- LDA decision boundary
- QDA decision boundary

Fitting LDA and QDA Models

Again, we use sample estimates

- $\hat{\mu}_{k}=\frac{1}{n_{k}} \sum_{i: y_{i}=k} x_{i}$
- $\widehat{\boldsymbol{\Sigma}}=\frac{1}{n-K} \sum_{k=1}^{K} \sum_{i: y_{i}=k}\left(x_{i}-\hat{\mu}_{k}\right)\left(x_{i}-\hat{\mu}_{k}\right)^{T}$
- $\widehat{\boldsymbol{\Sigma}}_{k}=\frac{1}{n_{k}-K} \sum_{i: y_{i}=k}\left(x_{i}-\hat{\mu}_{k}\right)\left(x_{i}-\hat{\mu}_{k}\right)^{T}$
- $\pi_{k}=n_{k} / n$

To simplify calculation we use the eigenvalue decomposition of the covariance matrices

$$
\widehat{\mathbf{\Sigma}}_{k}=\boldsymbol{U}_{k} \boldsymbol{D}_{k} \boldsymbol{U}_{k}^{T}
$$

- \boldsymbol{U}_{k} is a $p \times p$ orthonormal matrix
- \boldsymbol{D}_{k} is a diagonal matrix of decreasing positive eigenvalues $d_{k l}$

The main terms in the discriminants,

$$
\delta_{k}(x)=-\frac{1}{2} \log \left|\widehat{\boldsymbol{\Sigma}}_{k}\right|-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \widehat{\Sigma}_{k}^{-1}\left(x-\mu_{k}\right)+\log \pi_{k}
$$

then turn into

$$
\begin{gathered}
\log \left|\widehat{\Sigma}_{k}\right|=\sum_{l} \log d_{k l} \\
\left(x-\hat{\mu}_{k}\right)^{T} \hat{\Sigma}_{k}^{-1}\left(x-\hat{\mu}_{k}\right)=\left[\boldsymbol{U}_{k}^{T}\left(x-\hat{\mu}_{k}\right)\right]^{T} D_{k}^{-1}\left[U_{k}^{T}\left(x-\hat{\mu}_{k}\right)\right]
\end{gathered}
$$

The LDA estimator

- Step 1: Normalize X to spherical covariance

$$
X^{*} \leftarrow \boldsymbol{D}^{-1 / 2} \boldsymbol{U}^{T} X
$$

- Step 2: Classify to the closest class centroid in the transformed space, where distance is weighted by the class prior probabilities π_{k}

Comparison of the Classification Methods

We now know four classifiers: LDA, QDA and logistic regression

- when should we use which?

Logistic regression and LDA are surprisingly closely related

- univariate binary setting
- log-odds for LDA are (difference of two linear discriminants)
- while for logistic regression

$$
\begin{aligned}
& p_{2}(x)=1-p_{1}(x) \\
& \log \frac{p_{1}(x)}{1-p_{1}(x)}=c_{0}+c_{1} x
\end{aligned}
$$

$$
\log \frac{p_{1}(x)}{1-p_{1}(x)}=\beta_{0}+\beta_{1} x
$$

Similar, but different

- β_{0} and β_{1} are maximum likelihood estimates
- c_{0} and c_{1} are estimated from sample mean and variance of Gaussian distribution
- relationship extends to multivariate data: LR and LDA often give similar results - but not always!
- LDA makes stronger assumptions

Error Types: Sensitivity vs. Specificity

LDA Model Results

	True Default Status		
Prediction	No (-)	Yes (+)	Total
No (-)	9,644	252	9,896
Yes (+)	23	81	104
Total	9,667	333	10,000

Sensitivity Sens $=T P /(T P+F N)=T P / P^{*}$

- fraction of correctly predicted positives

$$
\text { Specificity Spec }=T N /(T N+F P)=T N / N^{*}
$$

- fraction of correctly predicted negatives
- No Sens $=\frac{0}{333}=0 \%, \quad$ Spec $=\frac{9,667}{9,667}=100 \%$
- LDA Sens $=\frac{81}{333}=24.3 \%, \quad$ Spec $=\frac{9,644}{9,667}=99.8 \%$
- LDA approximates the Bayes classifier, it minimizes error on all observations
 False positive
Type-2 error False negative

Error Types: Sensitivity vs. Specificity

Biasing the classifier trades sensitivity for specificity

$$
\log \left(\left(p_{k}(x)\right) /\left(p_{l}(x)\right)\right)=\delta_{k}(x)-\delta_{l}(x)
$$

- move the decision threshold between class no or yes from

$$
\operatorname{Pr}(\text { default }=\text { yes } \mid X=x)=0.5
$$

- we can increase sensitivity by choosing
$\operatorname{Pr}($ default $=$ yes $\mid X=x)<0.5$
as this assigns more points to class yes
- for $\operatorname{Pr}($ default $=$ yes $\mid X=x)<0.2$
- Sens $=195 / 333=58.6 \%$
- Spec $=9,432 / 9,667=97.6 \%$
- Error $=373 / 10,000=3.73 \%$
- error rates change smoothly when we move the threshold

- error rate
".". false-negative rate ($1-$ Sens)
--- false-positive rate ($1-S p e c$)

ROC Curves

Receiver-Operating Characteristic (ROC) curves plot Sens against 1 - Spec for all thresholds

- Area Under the ROC-Curve (AUC) measures the quality of a classifier independent of the choice of that threshold
- optimally Spec $=$ Sens $=1$ for any threshold $(A U C=1)$
- random classifier performs on the diagonal ($A U C=0.5$)
- if the ROC curve goes below the diagonal, we can improve accuracy by inverting the classifier

ROC curves are not influenced by imbalance of the data

- balance only affects locations of a threshold along the curve

ROC Curve

