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Classification Overview
In classification, we want to predict categorical outputs

Example will someone pay back their loan? yes or no?
§ inputs: annual income, monthly balance, student status
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Linear Discriminant Analysis
Bayesian classification for 𝐾 classes
§ Use Bayes’ formula to determine posterior density per class Pr 𝑌 = 𝑘 𝑋 = 𝑥

𝑝! 𝑥 = Pr 𝑌 = 𝑘 𝑋 = 𝑥 =
𝜋!𝑓! 𝑥

∑ℓ#$% 𝜋ℓ𝑓ℓ 𝑥
§ Classify each point to its most probable class

Univariate LDA
§ Assume each 𝑓! 𝑥 is a univariate gaussian with the same variance
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§ Assign sample to class with the largest discriminator
§ Decision boundary for two classes is the set of points for which the discriminator are equal
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Multivariate LDA

Model assumptions
§ each class is a multivariate Gaussian
§ the covariance matrix is the same for all classes

𝑓! ( =
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* 𝚺
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2
𝜇!.𝚺/$𝜇! + log𝜋!

§ 𝚺 is the 𝑝×𝑝 covariance matrix of the inputs 𝚺 = Cov(𝑥)
§ model is fitted using sample estimates similar to the 1D case
§ 𝜇 easy, but 𝚺 is the hardest to estimate
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Multivariate	Gaussian	with	
two	uncorrelated	predictors
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Multivariate	Gaussian	with	
two	correlated	predictors	(0.7)



Quadratic Discriminant Analysis (QDA)

We give up the assumption that the covariances of all classes are all the same

For QDA we have
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For LDA we had
𝑓! " = #

$%
!
" 𝚺

$
"
exp − #

$
𝑥 − 𝜇! '𝚺(# 𝑥 − 𝜇!

𝛿! 𝑥 = 𝑥'𝚺(#𝜇! −
#
$
𝜇!'𝚺(#𝜇! + log𝜋!

5

§ Discriminator is quadratic in 𝑥
§ One covariance matrix per class
§ #parameters 𝐾𝑝(𝑝 + 3)/2

§ Discriminator is linear in x
§ One covariance matrix for all classes
§ #parameters (2𝐾 + 𝑝 + 1)𝑝/2



Example LDA vs. QDA

(ESL 4.4.3)V
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Two-class	problem	with	𝛴$ = 𝛴*
QDA	overtrains

Two-class	problem	with	𝛴$ ≠ 𝛴*
LDA	overtrains



Fitting LDA and QDA Models

Again, we use sample estimates
§ �̂�! =

$
0#
∑1:3&#! 𝑥1

§ &𝚺 = $
0/%

∑!#$% ∑1:3&#! 𝑥1 − �̂�! 𝑥1 − �̂�! .

§ &𝚺! =
$

0#/%
∑1:3&#! 𝑥1 − �̂�! 𝑥1 − �̂�! .

§ 𝜋! = 𝑛!/𝑛

To simplify calculation we use the eigenvalue 
decomposition of the covariance matrices

&𝚺! = 𝑼!𝑫!𝑼!.

§ 𝑼! is a 𝑝×𝑝 orthonormal matrix
§ 𝑫! is a diagonal matrix of decreasing

positive eigenvalues 𝑑!)
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The main terms in the discriminants,
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1
2 log
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log 𝑑!4

𝑥 − �̂�! . 7Σ!/$ 𝑥 − �̂�! = 𝑼!. 𝑥 − �̂�!
.𝐷!/$ 𝑈!. 𝑥 − �̂�!

The LDA estimator
§ Step 1: Normalize 𝑋 to spherical covariance

𝑋∗ ← 𝑫/$/*𝑼.𝑋
§ Step 2: Classify to the closest class centroid in the 

transformed space, where distance is weighted 
by the class prior probabilities 𝜋𝑘
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Comparison of the Classification Methods
We now know four classifiers: LDA, QDA and logistic regression
§ when should we use which?

Logistic regression and LDA are surprisingly closely related
§ univariate binary setting 𝑝*(𝑥) = 1 − 𝑝$(𝑥)

§ log-odds for LDA are log -$ (
$/-$(()

= 𝑐: + 𝑐$𝑥

(difference of two linear discriminants)
§ while for logistic regression log -$ (

$/-$ (
= 𝛽: + 𝛽$𝑥

Similar, but different
§ 𝛽* and 𝛽# are maximum likelihood estimates
§ 𝑐* and 𝑐# are estimated from sample mean and variance of Gaussian distribution
§ relationship extends to multivariate data: LR and LDA often give similar results – but not always!
§ LDA makes stronger assumptions
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Error Types: Sensitivity vs. Specificity

Example default	with balance and student as inputs
§ training error for LDA is 2.75%
§ data is highly unbalanced, we have only 3,33% positives
§ the No-only classifier has an error of already only 3,33%

Sensitivity Sens	=	𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) = 𝑇𝑃/𝑃∗

§ fraction of correctly predicted positives

Specificity Spec	=	𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) = 𝑇𝑁/𝑁∗

§ fraction of correctly predicted negatives

§ No Sens	= '
(((

= 0% , Spec= ),++,
),++,

= 100%

§ LDA Sens= -.
(((

= 24.3% , Spec= ),+//
),++,

= 99.8%

§ LDA approximates the Bayes classifier, 
it minimizes error on all observations

(ESL 4.4.3)V

Prediction
True Default Status

No (−)           Yes (+)                 Total

No (−) 9,644 252 9,896

Yes (+) 23 81 104

Total 9,667 333 10,000

Confusion	matrix

LDA	Model	Results

Prediction
True Default Status

No (−)            Yes (+)                Total

No (−) TN FN 𝑁

Yes (+) FP TP 𝑃

Total 𝑁∗ 𝑃∗ 𝑛

Type-1 error
False positive Type-2 error

False negative
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Error Types: Sensitivity vs. Specificity

Biasing the classifier trades sensitivity for specificity
log C𝑝! 𝑥 𝑝) 𝑥 = 𝛿! 𝑥 − 𝛿)(𝑥)

§ move the decision threshold between class no or yes from
Pr 𝐝𝐞𝐟𝐚𝐮𝐥𝐭 = yes 𝑋 = 𝑥 = 0.5

§ we can increase sensitivity by choosing
Pr 𝐝𝐞𝐟𝐚𝐮𝐥𝐭 = yes 𝑋 = 𝑥 < 0.5
as this assigns more points to class yes

§ for Pr 𝐝𝐞𝐟𝐚𝐮𝐥𝐭 = yes 𝑋 = 𝑥 < 0.2
g Sens	=	195/333 = 58.6%
g Spec	=	9,432/9,667 = 97.6%
g Error	=	373/10,000 = 3.73%

§ error rates change smoothly when we move the threshold

(ESL 4.4.3)V
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ROC Curves

Receiver-Operating Characteristic (ROC) curves 
plot 𝑆𝑒𝑛𝑠 against 1 − 𝑆𝑝𝑒𝑐 for all thresholds
§ Area Under the ROC-Curve (AUC) measures the quality of 

a classifier independent of the choice of that threshold
§ optimally 𝑆𝑝𝑒𝑐 = 𝑆𝑒𝑛𝑠 = 1 for any threshold (𝐴𝑈𝐶 = 1)
§ random classifier performs on the diagonal (𝐴𝑈𝐶 = 0.5)
§ if the ROC curve goes below the diagonal, we can 

improve accuracy by inverting the classifier

ROC curves are not influenced by imbalance of the data
§ balance only affects locations of a threshold along the curve

V

=
𝑆𝑒
𝑛𝑠

= 𝟏 – 𝑺𝒑𝒆𝒄

High threshold

Low threshold

Threshold=0.5

AUC=0.95

11


