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Classification Overview

In classification, we want to predict categorical outputs

Example will someone pay back their loan? yes or no?
= jnputs: annual income, monthly balance, student status
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Linear Discriminant Analysis

Bayesian classification for K classes
= Use Bayes' formula to determine posterior density per class Pr(Y =k | X = x)

. . . . T f1 (%)
pr(x) =Pr(Y=k|X=x)= —Z§=1 )

= (Classify each point to its most probable class

Univariate LDA

= Assume each f;(x) is a univariate gaussian with the same variance

Ty 1 (%)

: : 1 1
- Bayesian classfier p,(x) = K mefe@® X Tk g €XP (—E(x — uk)z)
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= Discriminant: §,(x) = x - o~ 55+ logmy

= Assign sample to class with the largest discriminator
= Decision boundary for two classes is the set of points for which the discriminator are equal

(ESL 4.4.7)



Multivariate LDA

Model assumptions
=  each class is a multivariate Gaussian
= the covariance matrix is the same for all classes

1 1
fry = ——F—€xp (— 5 (= u)TE T x uk)>
(2m)2z|z|2

1
S (x) = xTE7 —Euiz‘luk + log 1

= ¥ is the pXp covariance matrix of the inputs £ = Cov(x)
= model is fitted using sample estimates similar to the 1D case
= peasy butXis the hardest to estimate
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Multivariate Gau$

two uncorrelated predictors

%
Multivariate Gau%

two correlated predictors (0.7)

(ESL 4.4.3)
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Quadratic Discriminant Analysis (QDA)

We give up the assumption that the covariances of all classes are all the same

For QDA we have For LDA we had
1 1 -
fr = —g—rexp (=3 (= )T EF (e = ) ey = ——1xp (=3 (e = 1) "E7x - ) )
(2m)Z|Zk |2 (2m)Z|Z[Z 2
1 — - 1 -
8 (x) = —ngzk Y+ xTE e — gﬂzzk iy + logmy 5, (x) = xTx tp, — %u};Z‘luk + log
= Discriminator is quadratic in x = Discriminator is linear in x
= One covariance matrix per class =  One covariance matrix for all classes

=  #parameters Kp(p + 3)/2 =  #parameters 2K +p + 1)p/2



Example LDA vs. QDA

Two-class problem with X1 = X, Two-class problem with X1 # X,
QDA overtrains LDA overtrains

Xq X1
— . Bayes decision boundary — . Bayes decision boundary
—— LDA decision boundary —— LDA decision boundary
== QDA decision boundary == QDA decision boundary

(ESL 4.4.3)
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Fitting LDA and QDA Models

Again, we use sample estimates
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To simplify calculation we use the eigenvalue

decomposition of the covariance matrices
fk = UkaU’II;

= U, IS a pxp orthonormal matrix

= D, is a diagonal matrix of decreasing
positive eigenvalues dy,;

The main terms in the discriminants,
O (x) = _%10g|2k| — % (x — ) TE (o — ) + logmy,
then turn into
log|fk| = ZIOgdkl
l

O — )" S0 (¢ — i) = [UT(x — )] D [UF G — fiy)]

The LDA estimator
= Step 1: Normalize X to spherical covariance
X* <D UTX
= Step 2: Classify to the closest class centroid in the

transformed space, where distance is weighted
by the class prior probabilities

(ESL 4.3.2)
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Comparison of the Classification Methods

We now know four classifiers: LDA, QDA and logistic regression
= when should we use which?

Logistic regression and LDA are surprisingly closely related

= univariate binary setting pa(x) =1 —py(x)

= |og-odds for LDA are log% = co + 1%
(difference of two linear discriminants)

= while for logistic regression log% = Bo + B1x

Similar, but different

= B, and B; are maximum likelihood estimates

" ¢y and ¢, are estimated from sample mean and variance of Gaussian distribution

= relationship extends to multivariate data: LR and LDA often give similar results — but not always!
= | DA makes stronger assumptions



Error Types: Sensitivity vs. Specificity

Example default with balance and student as inputs

= training error for LDA is 2.75%
= data is highly unbalanced, we have only 3,33% positives
= the No-only classifier has an error of already only 3,33%

Sensitivity Sens=TP/(TP + FN) =TP/P*
= fraction of correctly predicted positives

Specificity Spec=TN/(TN + FP) = TN/N*
= fraction of correctly predicted negatives

= No Sens:%=0%, Spec—%=100%

= DA Sens:% =243%, Spec=g 2044

—998%

= DA approximates the Bayes cIaSS|ﬂer,
it minimizes error on all observations

LDA Model Results
- True Default Status
Prediction No (—) Yes (+) Total
No (—) 9,644 252 9,896
Yes (+)

True Default Status
Prediction No (—) Yes (+) Total

No (—) ™ FN N

Yes (+) FP P P

Type-1 error Confusion matrix
False positive

Type-2 error
False negative

(ESL 4.4.3)
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Error Types: Sensitivity vs. Specificity

Biasing the classifier trades sensitivity for specificity
log((pk(x))/(Pz(x))) = 8 (x) — 6, (%)

= move the decision threshold between class no or yes from
Pr(default =yes | X =x) = 0.5
= we can increase sensitivity by choosing
Pr(default =yes | X =x) < 0.5
as this assigns more points to class yes
» for Pr(default =yes | X =x) < 0.2
= Sens=195/333 = 58.6%
= Spec=9,432/9,667 = 97.6%
« Error=373/10,000 = 3.73%
= error rates change smoothly when we move the threshold

Error rate

Threshold

= error rate
= false-negative rate (1 — Sens)
=== false-positive rate (1 — Spec)

(ESL 4.4.3)
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ROC Curves

Receiver-Operating Characteristic (ROC) curves
plot Sens against 1 — Spec for all thresholds

» Area Under the Roc-Curve (AUC) measures the quality of
a classifier independent of the choice of that threshold

= optimally Spec = Sens = 1 for any threshold (AUC = 1)
= random classifier performs on the diagonal (AUC = 0.5)

= if the ROC curve goes below the diagonal, we can
improve accuracy by inverting the classifier

ROC curves are not influenced by imbalance of the data
= balance only affects locations of a threshold along the curve
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