
Elements of Machine Learning, WS 2023/2024
Jilles Vreeken and Krikamol Muandet

Exercise Sheet #2: Classification

Deadline: Thursday, November 30, 2023, 15:00
Before solving the exercises, read the instructions on the course website.

• For each theoretical problem, submit a single pdf file that contains your answer to the respective
problem. This file may be a scan of your (legible) handwriting.

• For each practical problem, submit a single zip file that contains

– the completed jupyter notebook (.ipynb) file,

– any necessary files required to reproduce your results, and

– a pdf report generated from the jupyter notebook that shows all your results.

• For the bonus question, submit a single zip file that contains

– a pdf file that includes your answers to the theoretical part,

– the completed jupyter notebook (.ipynb) file for the practical component,

– any necessary files required to reproduce your results, and

– a pdf report generated from the jupyter notebook that shows your results.

• Every team member has to submit a signed Code of Conduct.

• IMPORTANT You must make the team on CMS before you upload the solutions. If you upload
the solutions first and create the team after it, the solution will not show for the new team member!

Problem 1 (T, 8 Points). Logistic regression. When answering the following questions be precise
,e.g. use equations, and keep your answers short.

1. [2pts] What are two problems of linear regression for classification?

2. [1pts] What is the mathematical relationship between the input variables and predicted
probabilities? What does logistic regression model?

3. [1pts] What are odds and how are they computed? Explain the relationship between odds and
logistic regression?

4. [2pts ] In the case of multivariate logistic regression, how do the odds change for an input x ∈ Rd, if
x is perturbed as x̃ = x+ ϵej , for ϵ ̸= 0 What can you say about the change depending on ϵ?

5. [2pts] Let X be a scalar random variable. Prove that

p(X) =
eβ0+β1X

1 + eβ0+β1X
⇐⇒ log

(
p(X)

1− p(X)

)
= β0 + β1X .

What is the relationship between the logistic and the logit function? Why is this information about
the relationship important? Explain.
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Problem 2 (T, 12 Points). Linear Discriminate Analysis.

1. [2pts] In the derivation LDA we assume that input feature x ∈ R is continous. Here, we consider
x ∈ N0 to be a natural number and x follows a Poisson distribution. So, pk(x) is given by

pk(x) = Pr(Y = k | X = x) =
πkfk(x)∑K
ℓ=1 πℓfℓ(x)

, where fk(x) =
λx
ke

−λk

x!
.

Per class k, there is seperate distribution parameter λk > 0. Derive the decision boundary for two
classes k and l with respect to x.

2. [4pts] In the lecture we dealt with finitely many classes k ∈ [K]. In the following assume there are

infinitely many classes1 k ∈ N0 (here classes start 0) and k is Poisson-distributed π(k) = λke−λ

k! .
Moreover, assume x ∈ R and fk(x) ∼ N (µk, σ

2). Derive the decision boundary for two classes k
and l with respect to x.
Hint: Perform similar steps as in (1.), except that π(k) follows a poisson distribution .

3. [3pts] Next, we consider the multivarite setting x = (x1, ..., xm)T with K classes i.e. p(k) = πk .
Furthermore, we assume that all xi are mutually independent, that is f(x) =

∏m
i=1 fi(xi), even

when conditioned on a certain class. We assume that the variance is the same across classes, while
the means differ per class. Thus, per class each feature is distributed as fki(xi) ∼ N (µki, σ

2
i ).

Derive the density fk(x). State (not derive) the discrimant δx.

4. [2pts] What are the assumptions of LDA regarding the data distribution and decision boundary.
How do they compare to the assumptions of the other models presented in the lecture (k−NN,
Logistic regression, QDA)?

5. [1pts] For the multivariate setting, give a heuristic depending on covariance matrix Σ, when it is
better to use LDA or QDA. Why can it be preferable to use LDA instead of QDA in that case?

Problem 3 (P, 15 Points). Speech Recognition. We will now consider LDA and QDA for a
real-world speech recognition task. The data we consider contains digitized pronunciation of five
phonemes: sh as in “she”, dcl as in “dark”, iy as the vowel in “she”, aa as the vowel in “dark”, and ao

as the first vowel in “water”. These phonemes correspond to responses/classes (column name g). The
dataset contains 256 predictors (log-periodograms, which is a common way of representing voice
recordings in speech recognition).
Please rename the file to include the matriculation numbers of all team members (e.g.
7010000 2567890 A1.ipynb)
Use Practical_Problem_1.ipynb found in the a1_programming file from the course website.

1. [2pts] Load the phoneme data set phoneme.csv and split the dataset into a training and test set
according to the speaker column. Then exclude the row.names, speaker and response column g

from the features.
Useful functions: sklearn.model_selection.StratifiedShuffleSplit.

2. [2pts] Fit an LDA model to classify the response based on the predictors; then compute and report
train and test error.
Useful functions: sklearn.discriminant_analysis.LinearDiscriminantAnalysis.

3. [4pts] For every pair of phenomes select the corresponding data points. Fit an LDA model on all
data sets and repeat the steps done in (2). Explain your findings.

4. [4pts ] Repeat steps (2) and (3) using QDA and report your findings. What model do you prefer and
why?

1This setting corresponds to CW Ex 1.3 e.g. how many cars cross an intersection.

2 of 4



Elements of Machine Learning, WS 2023/2024
Jilles Vreeken and Krikamol Muandet

Exercise Sheet #2: Classification

5. [3pts] Generate confusion matrices for the LDA and QDA model for the combination of phenomes,
which proved to be the hardest to classify. Which differences can you observe between the models?

Problem 4 (Bonus). Logistic Regression.
In the lecture we saw multivariate logistic regression (MLR) for the two class setting. For a weight vector
w = (w1, ..., wm)T ∈ Rm and bias b ∈ R, the probability of a sample x has class y = 1 is given by:

p(y = 1 |x) = exp(wTx+ b)

1 + exp(wTx+ b)
= σ(wTx+ b) = σ(z) ,

where z = wTx+ b. In practice, several tasks involve classifying more than two classes. In this exercise,
we extend the multivariate logistic regression to the multiclass setting (MMLR). Instead of having one
weight vector, MMLR uses K weight vectors i.e. one per class. The probability of a sample xn belonging
to class y = k is modelled as

p(y = k |xn) =
exp(wT

k xn + bk)∑K
j=1 exp(w

T
j xn + bj)

=: Λθ(k | zn)

where znj = wT
j xn + bj , for j = 1...K and θ = {wi}mi=1 ∪ {bi}mi=1. In the following, we omit the subscript

θ if it is not required.

1. Show that for K = 2, MLR and MMLR are equivalent by choosing appropriate parameters.

2. For an i.i.d. set of observations (X,Y ) = {(xn, yn)}Nn=1, where xi ∈ Rm and yi ∈ {1..K}, show that
the negative log likelihood function for MMLR can be written as:

− log p(Y |X) = −
N∑

n=1

K∑
k=1

yonk log ŷnk . (4.1)

For ease of notation, let ŷnk = Λ(k | zn). Furthermore, yon ∈ {0, 1}K , denotes the one-hot encoding
of yn i.e. yonk = 1 if yn = k else 0 .

3. Show that the partial derivative of Λ(k | zn) wrt. znj can be written as

∂Λ(k | zn)
∂znj

= Λ(k | zn)(1kj − Λ(j | zn)) ,

where 1 is the identity matrix.

4. Next, the goal is to find the set of parameters θ = {wi}mi=1 ∪ {bi}mi=1 that minimize the negative
log-likelihood in equation 4.1.

argmin
θ

L(Y, Ŷθ) = −
N∑

n=1

K∑
k=1

yonk log ŷnk

Note that Ŷθ depends on θ. In the lecture, we used the Newton-Rhapson method to optimize the
weights, which involves computing the inverse of hessian with respect to the parameters. Depending
on the dimensionlity of the data, this can be prohibitively expensive. Here, we resort to a simpler
optimzation scheme, namely gradient descent. The update rule for a weight vector wj ∈ θ and bias
bj ∈ θ is given by

wnew
j = wold

j − α∇wold
j

L(Y, Ŷwold
j

)

bnewj = boldj − α∂boldj
L(Y, Ŷboldj

)

This involves computing, the gradient ∇2 and partial derivative with respect to parameters. The
hyper-parameter α is called the learning rate and specifies the step size in each iteration.

2https://en.wikipedia.org/wiki/Partial_derivative
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(a) Derive the gradient descent update in closed form.

(b) Implement the gradient update in the accompanying notebook. Do not use any for loops for
the gradient update, instead use matrix and vector operations.

(c) Train your implentation of MMLR on the handwritten digit dataset. Choose the learning rate
and number of iterations, such that the classifier achieves a test accuracy of > 90%.
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