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Classwork Sheet #2: Classification

Problem 1 (C, For Tutorials 20.11 and 21.11). Logistic regression.

1. For which types of response variables is it better to use logistic or linear regression?

2. Assume you want to predict how many cars cross an intersection depending on date and and daytime.
Is it better to use logistic or linear regression? What problems occur?

3. Read Chapter 4.6.1 & 4.6.2 in the ISLP book. Is the Poisson regression model better suited for the
problem described above?

4. Show that for the sigmoid function σ(x) = ex

1+ex , the following two equations hold:

(i) σ(−x) = 1− σ(x)

(ii) σ′(x) = σ(x)(1− σ(x)).

Solution.

1. Linear regression is better for continous targets and logistic regression for a discrete target with
finitely many instantiations, which can be seen as different categories.

2. Linear regression is better suited, since, in theory at least, the number of cars crossing an intersection
can not be easily bouded. Moreover, how many cars cross an intersection is a quantitative quantitative
and not a qualitive.
Problems:

• Linear regression will predict, if the gradient is not zero, values below zero, which does not
make sense in this example.

• The variance is not the same for every time of the day, instead it will vary depending on the
daytime.

• The target is discrete, i.e. assumes values in N0, hence predicting values not in N0 does not
make sense.

3. Yes, the model is more suitable, since our target corresponds to a counting variable.

4. Proof.

(i) 1− σ(x) = 1+ex

1+ex − ex

1+ex = 1
1+ex = e−x

1+e−x = σ(−x)

(ii) dσ(x)
dx = ex

(1+ex)2
= σ(x)

(
1

1+ex

)
= σ(x)

(
e−x

1+e−x

)
= σ(x)σ(−x) = σ(x)(1− σ(x))
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Problem 2 (C, For Tutorials 27.11 and 28.11). Linear Discriminant Analysis

1. Show that for a symmetric matrix A ∈ Rn×n and two vectors u, v ∈ R it holds that xTAv = vTAx.

2. Given two independent normally distributed random variables x1 ∼ N (µ1, 1) and x2 ∼ N (µ2, 1).
Show that the joint density p(x1, x2) is again a density of a normal distribution.

3. Given a set of n independent observations x = x1, ..., xn from a normal distribution with unknown
mean µ and variance σ2. Derive µ that maximizes the likelihood L(µ,x):

argmax
µ

L(µ,x) =
n∏

i=1

1√
2πσ

exp

(
− 1

2σ2
(xi − µ)2

)

4. Compute log odds for multivariate LDA in the multiclass setting and show that the log-odds are

linear in x. The log-odds for a class k and l are defined as log
(

Pr(Y=k|X=x)
Pr(Y=l|X=x)

)
.

Solution.

1. Proof. xTAv = (xTAv)T = (Av)Tx = vTATx = vTAx, the last equation follows from A being
symmetric.

2. Since x1 and x2 are independent the joint factorizes as:

p(x1, x2) = p(x1)p(x2) =
1√
2π

exp

(
−1

2
(x1 − µ1)

2

)
1√
2π

exp

(
−1

2
(x2 − µ2)

2

)
=

1

2π
exp

(
−1

2

[
(x1 − µ1)

2 + (x2 − µ2)
2
])

=
1

2π
exp

(
−1

2

[
(x− µ)T (x− µ)

])
, for µ = (µ1, µ2), Hence, p(x1, x2) ∼ N (µ,12) is a density function of a normal distribution.

3. First, derive the log-likelihood:

logL(µ,x) =
n∑

i=1

1√
2πσ

− 1

2σ2

n∑
i=1

(xi − µ)2

Note, that log is monotonically increasing thus it does not change the argmax. Next, take the
derivative w.r.t. µ and solve for its roots:

∂

∂µ
logL(µ,x) = − 1

2σ2

n∑
i=1

−2(xi − µ) =
1

σ2

n∑
i=1

(xi − µ)
!
= 0

Solving for µ yields:

1

σ2

n∑
i=1

(xi − µ) = 0 ⇔
n∑

i=1

xi −
n∑

i=1

µ = 0 ⇔
n∑

i=1

xi − nµ = 0 ⇔ µ =
1

n

n∑
i=1

xi

Moreover, ∂2

∂2µL(µ,x) = − n
σ2 < 0, thus µ = 1

n

∑n
i=1 xi is a global maximum and therefore the

solution to argmaxµ L(µ,x).
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4. Proof.

log

(
Pr(Y = k | X = x)

Pr(Y = l | X = x)

)
= log

(
πkfk(x)

πlfl(x)

)

= log

πk exp
(
− 1

2 (x− µk)
T
Σ−1 (x− µk)

)
πl exp

(
− 1

2 (x− µl)
T
Σ−1 (x− µl)

)


= log

(
πk

πl

)
− 1

2
(x− µk)

T
Σ−1 (x− µk)

+
1

2
(x− µl)

T
Σ−1 (x− µl)

= log

(
πk

πl

)
− 1

2
(µk + µl)

T
Σ−1 (µk − µl)

+ xTΣ−1 (µk − µl)

=mTx+ b,

for b := log
(

πk

πl

)
− 1

2 (µk + µl)
T
Σ−1 (µk − µl) and m := (Σ−1 (µk − µl))j , one can see that the

log-odds are linear in x.
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