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Classification Overview

In classification, we want to predict categorical outputs

Example will someone pay back their loan? yes or no?
§ inputs: annual income, monthly balance, student status
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Classification Overview

In classification, we want to predict categorical outputs

Example will someone pay back their loan? yes or no?
§ inputs: annual income, monthly balance, student status

More examples
§ identify whether an email is a spam email
§ classify which out of 𝑘 diseases a patient has given symptoms
§ decide whether a transaction is fraudulent based on transaction 

history, location, IP,  DNS, etc.
§ identify disease-causing mutations based on DNA sequences 

from patients with and without a given disease (feature selection) 
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Why not just do linear regression?

Linear regression can actually work for binary classification

§ simply code 𝑌 = # 0 if 𝐠𝐫𝐞𝐞𝐧
1 if 𝐫𝐞𝐝
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Why not just do linear regression?

Linear regression does not generalize to more than two classes

For example, which coding when we have three classes?

§ 𝑌 = $
0 if 𝐠𝐫𝐞𝐞𝐧
1
2

if 𝐫𝐞𝐝
if 𝐛𝐥𝐮𝐞

or 𝑌 = $
0 if 𝐫𝐞𝐝
1
2

if 𝐛𝐥𝐮𝐞
if 𝐠𝐫𝐞𝐞𝐧

or 𝑌 = $
0 if 𝐫𝐞𝐝
3
9

if 𝐛𝐥𝐮𝐞
if 𝐠𝐫𝐞𝐞𝐧

?

§ each imposes a different ordering, and different distances between classes

A regression model tries to respect the ordering and numbers representing the classes
§ unless we know that the labels are metric, we should not impose one as this introduces undue bias
§ also, for more than two classes linear-regression has a problem called masking (ESL page 105)
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Logistic Regression

Example Credit default	data
§ univariate model, e.g.

Pr(𝐝𝐞𝐟𝐚𝐮𝐥𝐭 = yes ∣ 𝐛𝐚𝐥𝐚𝐧𝐜𝐞)
§ simple linear regression models this as

𝑓 𝑋 = 𝛽! + 𝛽"𝑋
§ which leads to values outside 0,1
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Logistic Regression

Example Credit default	data
§ univariate model, e.g.

Pr(𝐝𝐞𝐟𝐚𝐮𝐥𝐭 = yes ∣ 𝐛𝐚𝐥𝐚𝐧𝐜𝐞)
§ simple linear regression models this as

𝑓 𝑋 = 𝛽! + 𝛽"𝑋
§ which leads to values outside 0,1

We can map these into [0,1] using the logistic function

𝑝 𝑋 =
𝑒#(%)

1 + 𝑒#(%)
=

𝑒'((')%

1 + 𝑒'((')%

IV

probability that
𝑌 = 𝐲𝐞𝐬 = 1
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Logistic Regression

Example Credit default	data
§ univariate model, e.g.

Pr(𝐝𝐞𝐟𝐚𝐮𝐥𝐭 = yes ∣ 𝐛𝐚𝐥𝐚𝐧𝐜𝐞)
§ simple linear regression models this as

𝑓 𝑋 = 𝛽! + 𝛽"𝑋"
§ which leads to values outside 0,1

We can map these into [0,1] using the logistic function

𝑝 𝑋 =
𝑒#(%)

1 + 𝑒#(%)
=

𝑒'((')%

1 + 𝑒'((')%

§ not only are all values now sensible, we also have the

odds ratio as ) %
"*) %

= 𝑒'((')% ,  and the log-odds (logit) as

IV
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Interpreting a Logistic Model

If we increasing 𝑋 by one unit, we
§ add 𝛽" to the log-odds
§ multiply the odds by 𝑒')

Effect on 𝑝(𝑋) is non-linear
§ if 𝛽" > 0, adding 𝑋 increases 𝑝(𝑋)
§ if 𝛽" < 0, adding 𝑋 decreases 𝑝(𝑋)

IV
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1 − 𝑝 𝑋
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Estimating the Coefficients of Logistic Regression

Maximum Likelihood 
§ generative approach to find the model that is least surprised to see the given data
§ the likelihood function to maximize is

𝑝 𝑥*, 𝑥+, … , 𝑥, ∣ 𝛽-, 𝛽* = 3
.:0!1*

𝑝 𝑥. 3
.:0!1-

(1 − 𝑝 𝑥. )

§ equivalent, but often more practical, is to maximize the log-likelihood
ℓ 𝛽-, 𝛽* = 8

.:0!1*

log 𝑝 𝑥. + 8
.:0!1-

log(1 − 𝑝 𝑥. )

§ equivalent, is to minimize the negative log-likelihood (NLL)

We can maximize the likelihood function using nonlinear gradient-descent (Newton-
Raphson)
§ the intercept only adjusts the average of the fitted probabilities to the proportions of 1s in the data
§ in each step we do linear regression, and can hence apply all types of linear model analysis we know
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Example Single Continuous Predictor

Probabilities of default	given balance

0𝑝 1000 =
𝑒$#".&'#()".""''×#"""

1 + 𝑒$#".&'#()".""''×#""" = 0.00576

0𝑝 2000 =
𝑒$#".&'#()".""''×+"""

1 + 𝑒$#".&'#()".""''×+""" = 0. 586

§ if we increase balance by 1 EUR, this
§ increases the log odds of defaulting by 0.0055
§ multiplies the odds of defaulting by 𝑒!.!!,, = 1.0055%

IV

Coefficient Std. error 𝑍-statistic 𝑝-value

intercept -10.653 0.3612 -29.5 <0.0001

balance 0.0055 0.0002 24.9 <0.0001
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Example Single Binary Predictor

Probabilities of default	given student

0𝑝 𝐬𝐭𝐮𝐝𝐞𝐧𝐭 = yes =
𝑒$(.'",#)".,","-×#

1 + 𝑒$(.'",#)".,","-×# = 0.00431

0𝑝 𝐬𝐭𝐮𝐝𝐞𝐧𝐭 = no =
𝑒$(.'",#)".,","-×"

1 + 𝑒$(.'",#)".,","-×" = 0.00292

IV

Coefficient Std. error 𝑍-statistic 𝑝-value

intercept -3.5041 0.0707 -49.55 <0.0001

student 0.4049 0.1150 3.52 0.0004
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Multiple Logistic Regression

The multivariate logistic regression model is defined as

§ log . /
#$. / = 𝛽" + 𝛽#𝑋 +⋯𝛽.𝑋. with 𝑝 𝑋 = 0"#$"%&$⋯$"(&(

#)0"#$"%&$⋯$"(&(

Example predicting 𝐝𝐞𝐟𝐚𝐮𝐥𝐭 based on 𝐛𝐚𝐥𝐚𝐧𝐜𝐞, 𝐢𝐧𝐜𝐨𝐦𝐞, and 𝐬𝐭𝐮𝐝𝐞𝐧𝐭

0𝑝 𝐬𝐭𝐮𝐝𝐞𝐧𝐭 = yes, 𝐛𝐚𝐥𝐚𝐧𝐜𝐞 = 1,500, 𝐢𝐧𝐜𝐨𝐦𝐞 = 40 =
𝑒$#".1&-)".""'2,×#,'"")".""(×,"$".&,&1×#

1 + 𝑒$#".1&-)".""'2,×#,'"")".""(×,"$".&,&1×# = 0.058

0𝑝 𝐬𝐭𝐮𝐝𝐞𝐧𝐭 = no, 𝐛𝐚𝐥𝐚𝐧𝐜𝐞 = 1,500, 𝐢𝐧𝐜𝐨𝐦𝐞 = 40 =
𝑒$#".1&-)".""'2,×#,'"")".""(×,"$".&,&1×"

1 + 𝑒$#".1&-)".""'2,×#,'"")".""(×,"$".&,&1×"
= 0.105

IV

Coefficient Std. error 𝑍-statistic 𝑝-value

intercept -10.8690 0.4923 -22.08 <0.0001

balance 0.0057 0.0002 24.74 <0.0001

income 0.0030 0.0082 0.37 0.7115

student	[yes] -0.6468 0.2362 -2.74 0.0062 13



Example Confounding in Logistic Regression

Why is the student	coefficient 
positive in the univariate and 
negative in the multivariate model?
§ confounding!
§ students have higher balance
§ students default at higher balance
§ for a fixed value of balance and 

income, a student is less likely 
to default than a nonstudent!
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The Sound of Machine Learning that is just

logistic regression… (credits @MaartenvSmeden)IV



IV

Classification  Discriminative vs. Generative

Discriminative Generative

Output for an input 𝑥 estimate 0𝑔 𝑥 of class 𝑔(𝑥)
probability distribution {𝑝4 𝑥 ∣ 𝑔 ∈ 𝐺},

𝑝4(𝑥) is the probability that 𝑥 belongs to class 𝑔

Main idea
the classifier returns an estimate of the 
output, which discriminates between 

different classes
the classifier generates the output 

with some probability 

Performance measure
loss function that measures the deviation

between estimate and output, 
e.g. 0-1 loss

(log-)likelihood of the estimator 
generating the output ∑56#7 log 𝑝4!(𝑥)

Optimization problem Minimize the loss function Maximize the likelihood
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Appendix
Fitting Logistic Regression Models

IV 17



Fitting Logistic Regression Models

We usually fit a logistic regression model by maximum likelihood
§ log-likelihood function ℓ 𝜃 = ∑56#7 log 𝑝4!(𝑥5; 𝜃) and density function 𝑝8 𝑥5 , 𝜃 = Pr 𝐺 = 𝑘 𝑋 = 𝑥5; 𝜃

§ for a binary problem, class coding 𝑦5 = \ 1 ∣ 𝑔5 = 1
0 ∣ 𝑔5 = 0 gives us 𝑝# 𝑥; 𝜃 = 𝑝 𝑥; 𝜃 and 𝑝+ 𝑥; 𝜃 = 1 − 𝑝(𝑥; 𝜃)

The log-likelihood then becomes
ℓ 𝜷 =^

56#

7

𝑦5 log 𝑝(𝑥5; 𝜷) + 1 − 𝑦5 log 1 − 𝑝 𝑥5; 𝜷 =^
56#

7

𝑦5𝜷!𝑥5 − log 1 + 𝑒𝜷):!

§ where 𝜷 = 𝛽", 𝛽#, … and 𝑥- a vector of the input values padded with a constant term 𝑋! = 1

(ESL 4.4.1)IV 18



Side calculation
ℓ 𝜷 =^

56#

7

𝑦5 log 𝑝(𝑥5; 𝜷) + 1 − 𝑦5 log 1 − 𝑝 𝑥5; 𝜷

= ∑56#7 𝑦5 log
0"#$"%

)*!

#)0"#$"%
)*!

+ 1 − 𝑦5 log
#

#)0"#$"%
)*!

(definition of 𝑝 𝑥5; 𝜷 )

= ∑56#7 𝑦5 𝛽" + 𝛽#!𝑥5 − log 1 + 𝑒;#);%):! − 1 − 𝑦5 log(1 + 𝑒;#);%
):!) (log 𝑎/𝑏 = log 𝑎 – log 𝑏)

= ∑56#7 𝑦5𝜷!𝑥5 − log 1 + 𝑒𝜷):! (simplify)

(ESL 4.4.1)IV 19



Fitting Logistic Regression Models

We find the 𝜷 that achieves maximum likelihood by setting the derivative to zero
§ this yields the score equations

𝜕ℓ 𝜷
𝜕𝜷

=X
-."

/

𝑥- 𝑦- − 𝑝 𝑥-; 𝜷 = 0

§ these can be broken down to 𝑝 + 1 equations that are nonlinear in 𝜷
§ because the first value of 𝑥- is 1, the first equation takes the shape

X
-."

/

𝑦- =X
-."

/

𝑝(𝑥-; 𝜷)

§ the expected number of class-1 assignments is the number class-1 we observed

(ESL 4.4.1)IV 20



Fitting Logistic Regression Models

We can solve the score equations numerically using Newton-Raphson

𝜷/01 = 𝜷234 −
𝜕5ℓ 𝜷234

𝜕𝜷𝜕𝜷6

*"
𝜕ℓ 𝜷234

𝜕𝜷
§ i.e. adjust coefficients proportionally to second derivative in the opposite direction of first derivative
§ repeat until convergence

§ note that 7
2ℓ '345

7'7'6
= −∑-."/ 𝑥-𝑥-6𝑝 𝑥-; 𝛽 1 − 𝑝 𝑥-; 𝛽 is our old friend, the Hessian matrix!

Log-likelihood is concave
§ single starting point suffices, 𝜷 = 0 is fine
§ typically converges, but overshooting can occur
§ diagonal of the Hessian matrix contains the squared standard deviations of outputs in the training set

(ESL 4.4.1)IV 21



Fitting Logistic Regression Models

In matrix notation we have
𝜕ℓ 𝜷
𝜕𝜷

= 𝐗6 𝐲 − 𝐩
𝜕5ℓ 𝜷
𝜕𝜷𝜕𝜷6

= −𝐗6𝐖𝐗

§ where 𝐖 is a diagonal matrix with elements 𝑤-- = −𝑝 𝑥-; 𝜷234 1 − 𝑝 𝑥-; 𝜷234

A single Newton-Raphson step is
𝜷/01 = 𝜷234 − 𝐗6𝐖𝐗 *"𝐗6 𝐲 − 𝐩 = 𝐗6𝐖𝐗 *"𝐗6𝐖 𝐗𝜷234 −𝐖*" 𝐲 − 𝐩 = 𝐗6𝐖𝐗 *"𝐗6𝐖𝐳

𝐳 = 𝐗𝜷234 −𝐖*"(𝐲 − 𝐩)

§ a linear least-squares problem with output 𝐳 weighted by diagonal matrix 𝐖

𝜷/01 = argmin
𝜷

𝐳 − 𝐗𝜷 6𝐖 𝐳− 𝐗𝜷

(ESL 4.4.1)IV 22


