Lecture 5

Classification II

ISLR 4, ESL 4

Classification Discriminative vs. Generative

	Discriminative	Generative
Output for an input <i>x</i>	estimate $\hat{g}(x)$ of class $g(x)$	probability distribution $\{p_g(x) \mid g \in G\}$, $p_g(x)$ is the probability that x belongs to class g
Main idea	the classifier returns an estimate of the output, which discriminates between different classes	the classifier generates the output with some probability
Performance measure	loss function that measures the deviation between estimate and output, e.g. 0-1 loss	(log-)likelihood of the estimator generating the output $\sum_{i=1}^{n} \log p_{g_i}(x)$
Optimization problem	Minimize the loss function	Maximize the likelihood

Bayesian Classification

Bayesian Methods

- Bayes' formula Probability of the input, given the output, i.e. class density Posterior (probability of the output given the input) $\rightarrow \Pr(Y \mid X) \stackrel{\checkmark}{=} \frac{\Pr(X \mid Y) \Pr(Y)}{\Pr(X)} \stackrel{\longleftarrow}{\longleftarrow}$ Prior probability of the output Prior probability of the input
- Pr(X) is a normalizing constant that only depends on the input data and often need not be computed

Bayesian classification for K classes

• use Bayes' formula to determine posterior density per class Pr(Y = k | X = x)

$$p_k(x) = \Pr(Y = k \mid X = x) = \frac{\pi_k f_k(x)}{\sum_{\ell=1}^K \pi_\ell f_\ell(x)} \xrightarrow{\text{class density}}$$

- we compute $p_k(x)$ by estimating the class prior probabilities π_k and the class densities $f_k(X)$
- we estimate the prior class probabilities from data, $\pi_k = \frac{1}{n} \sum_{i=1}^n I(y_i = k)$
- we somehow determine the probability density for point x for a class k
- we then classify each point to its most probable class

Linear Discriminant Analysis

Model assumptions

• every class is Gaussian-distributed

$$f_k(x) = \frac{1}{\sqrt{2\pi\sigma_k}} \exp\left(-\frac{1}{2\sigma_k^2}(x-\mu_k)^2\right)$$

all classes have the same variance

$$\sigma_1^2=\sigma_2^2=\cdots=\sigma_k^2=\sigma^2$$

The Bayesian classifier now becomes

$$p_{k}(x) = \frac{\pi_{k} f_{k}(x)}{\sum_{\ell=1}^{K} \pi_{\ell} f_{\ell}(x)} = \frac{\pi_{k} \frac{1}{\sqrt{2\pi}\sigma_{k}} \exp\left(-\frac{1}{2\sigma_{k}^{2}} (x - \mu_{k})^{2}\right)}{\sum_{l=1}^{K} \pi_{l} \frac{1}{\sqrt{2\pi}\sigma^{2}} \exp\left(-\frac{1}{2\sigma^{2}} (x - \mu_{l})^{2}\right)}$$

• the logarithm of the numerator

$$-\frac{x^2}{2\sigma^2} + x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log \pi_k - \log(\sqrt{2\pi}\sigma)$$

Linear Discriminant Analysis

The Bayes-optimal choice is to classify x to the class with the largest discriminant

the discriminant of a class k is the log-probability that cancels in the log odds

$$\log\left(\frac{p_k(x)}{p_l(x)}\right) = \delta_k(x) - \delta_l(x)$$

where

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log \pi_k$$

is the log-numerator from previous slide with the class-independent terms removed

Example Linear Discriminant Analysis

If $\pi_1 = \pi_2$ we classify an observation x to class 1 if

 $2x(\mu_1 - \mu_2) > \mu_1^2 - \mu_2^2$

• the Bayes decision boundary is the set of points for which both discriminants are equal, i.e.

$$x = \frac{\mu_1^2 - \mu_2^2}{2(\mu_1 - \mu_2)} = \frac{\mu_1 + \mu_2}{2}$$

the figure shows two 1D normal density functions.

V

 the dashed line represents the Bayes decision boundary, at which an observation is equally likely to belong to either class

Fitting Univariate LDA Models

In general, we do not know the underlying class densities

• we estimate these using the finite training sample

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i: y_i = k} x_i$$
$$\hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^K \sum_{i: y_i = k} (x_i - \hat{\mu}_k)^2$$
$$\pi = n_k/n$$

• we assign *x* to the class with the largest fitted discriminant

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log \hat{\pi}_k$$

• note that the discriminants are linear (!)

LDA fit over 20 samples per class, fitted decision boundary in dashed black. Bayes error 10.6%, LDA test error 11.1%

Model assumptions

- each class is a multivariate Gaussian
- the covariance matrix is the same for all classes

$$f_{k(x)} = \frac{1}{(2\pi)^{\frac{p}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu_k)^T \mathbf{\Sigma}^{-1}(x-\mu_k)\right)$$
$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$

• Σ is the $p \times p$ covariance matrix of the inputs $\Sigma = \text{Cov}(x)$

Model assumptions

- each class is a multivariate Gaussian
- the covariance matrix is the same for all classes

$$f_{k(x)} = \frac{1}{(2\pi)^{\frac{p}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu_k)^T \mathbf{\Sigma}^{-1}(x-\mu_k)\right)$$
$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$

• Σ is the $p \times p$ covariance matrix of the inputs $\Sigma = Cov(x)$

2D synthetic data example with three classes. Ellipses contain 95% of the class probability mass, the Bayes decision boundaries are dashed

V

Model assumptions

V

- each class is a multivariate Gaussian
- the covariance matrix is the same for all classes

$$f_{k(x)} = \frac{1}{(2\pi)^{\frac{p}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x - \mu_k)^T \mathbf{\Sigma}^{-1}(x - \mu_k)\right)$$
$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$

- Σ is the $p \times p$ covariance matrix of the inputs $\Sigma = \text{Cov}(x)$
- model is fitted using sample estimates similar to the 1D case
- μ easy, but Σ is the hardest to estimate

LDA fit of data set comprising 20 samples from each class, decision boundary in black

Example default with balance and student as inputs

- training error for LDA is 2.75%
- data is highly unbalanced, we have only 3,33% positives
- the No-only classifier has an error of already only 3,33%

Sensitivity Sens = $TP/(TP + FN) = TP/P^*$

fraction of correctly predicted positives

Specificity Spec = $TN/(TN + FP) = TN/N^*$

fraction of correctly predicted negatives

• No Sens =
$$\frac{0}{333} = 0\%$$
, Spec= $\frac{9,667}{9,667} = 100\%$

- LDA Sens= $\frac{81}{333}$ = 24.3%, Spec= $\frac{9,644}{9,667}$ = 99.8%
- LDA approximates the Bayes classifier, it minimizes error on all observations

V

LDA Model Results

	True Default Status		
Prediction	No (—)	Yes (+)	Total
No (—)	9,644	252	9,896
Yes (+)	23	81	104
Total	9,667	333	10,000

Types of Errors – a handy guide

Type I error (false positive)

Type II error (false negative)

Biasing the classifier trades sensitivity for specificity $\log((p_k(x))/(p_l(x))) = \delta_k(x) - \delta_l(x)$

- move the decision threshold between class **no** or **yes** from Pr(default = yes | X = x) = 0.5
- we can increase sensitivity by choosing Pr(default = yes | X = x) < 0.5 as this assigns more points to class yes
- for Pr(default = yes | X = x) < 0.2
 - Sens = 195/333 = 58.6%

V

- Spec = 9,432/9,667 = 97.6%
- Error = 373/10,000 = 3.73%

For a threshold of 0.5 we get Sens = 24.3%, Spec = 99.8%, Error=2.75%

	True Default Status		
Prediction	No (—)	Yes (+)	Total
No (—)	9,644	252	9,896
Yes (+)	23	81	104
Total	9,667	333	10,000

	True Default Status		
Prediction	No (—)	Yes (+)	Total
No (—)	9,432	138	9,570
Yes (+)	235	195	430
Total	9,667	333	10,000

While for a threshold of 0.2 we have Sens = 58.6%, Spec = 97.6%, Error=3.73%

Biasing the classifier trades sensitivity for specificity

 $\log((p_k(x))/(p_l(x))) = \delta_k(x) - \delta_l(x)$

- move the decision threshold between class **no** or **yes** from Pr(default = yes | X = x) = 0.5
- we can increase sensitivity by choosing Pr(default = yes | X = x) < 0.5 as this assigns more points to class yes
- for Pr(default = yes | X = x) < 0.2
 - Sens = 195/333 = 58.6%

V

- Spec = 9,432/9,667 = 97.6%
- Error = 373/10,000 = 3.73%
- error rates change smoothly when we move the threshold

ROC Curves

Receiver-Operating Characteristic (ROC) curves plot *Sens* against 1 – *Spec* for all thresholds

- Area Under the ROC-Curve (AUC) measures the quality of a classifier independent of the choice of that threshold
- optimally Spec = Sens = 1 for any threshold (AUC = 1)
- random classifier performs on the diagonal (AUC = 0.5)
- if the ROC curve goes below the diagonal, we can improve accuracy by inverting the classifier

ROC curves are **not influenced by imbalance** of the data

balance only affects locations of a threshold along the curve

Quadratic Discriminant Analysis (QDA)

We give up the assumption that the covariances of all classes are all the same

For QDA we have

$$f_{k(x)} = \frac{1}{(2\pi)^{\frac{p}{2}} |\mathbf{\Sigma}_{k}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu_{k})^{T} \mathbf{\Sigma}_{k}^{-1}(x-\mu_{k})\right) \qquad f_{k(x)} = \frac{1}{(2\pi)^{\frac{p}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu_{k})^{T} \mathbf{\Sigma}^{-1}(x-\mu_{k})\right) \\ \delta_{k}(x) = -\frac{1}{2} x^{T} \mathbf{\Sigma}_{k}^{-1} x + x^{T} \mathbf{\Sigma}_{k}^{-1} \mu_{k} - \frac{1}{2} \mu_{k}^{T} \mathbf{\Sigma}_{k}^{-1} \mu_{k} + \log \pi_{k} \qquad \delta_{k}(x) = x^{T} \mathbf{\Sigma}^{-1} \mu_{k} - \frac{1}{2} \mu_{k}^{T} \mathbf{\Sigma}^{-1} \mu_{k} + \log \pi_{k}$$
For LDA we had

Quadratic Discriminant Analysis (QDA)

We give up the assumption that the covariances of all classes are all the same

For QDA we have

$$f_{k(x)} = \frac{1}{(2\pi)^{\frac{p}{2}} |\mathbf{\Sigma}_{k}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu_{k})^{T} \mathbf{\Sigma}_{k}^{-1}(x-\mu_{k})\right) \qquad f_{k(x)} = \frac{1}{(2\pi)^{\frac{p}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu_{k})^{T} \mathbf{\Sigma}^{-1}(x-\mu_{k})\right) \\ \delta_{k}(x) = -\frac{1}{2} x^{T} \mathbf{\Sigma}_{k}^{-1} x + x^{T} \mathbf{\Sigma}_{k}^{-1} \mu_{k} - \frac{1}{2} \mu_{k}^{T} \mathbf{\Sigma}_{k}^{-1} \mu_{k} + \log \pi_{k} \qquad \delta_{k}(x) = x^{T} \mathbf{\Sigma}^{-1} \mu_{k} - \frac{1}{2} \mu_{k}^{T} \mathbf{\Sigma}^{-1} \mu_{k} + \log \pi_{k}$$
For LDA we had

$$f_{k(x)} = \frac{1}{(2\pi)^{\frac{p}{2}} |\mathbf{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu_{k})^{T} \mathbf{\Sigma}^{-1}(x-\mu_{k})\right)$$

Quadratic Discriminant Analysis (QDA)

In QDA every class has its own covariance matrix

$$f_{k(x)} = \frac{1}{(2\pi)^{\frac{p}{2}} |\mathbf{\Sigma}_{k}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu_{k})^{T} \mathbf{\Sigma}_{k}^{-1}(x-\mu_{k})\right)$$
$$\delta_{k}(x) = -\frac{1}{2} x^{T} \mathbf{\Sigma}_{k}^{-1} x + x^{T} \mathbf{\Sigma}_{k}^{-1} \mu_{k} - \frac{1}{2} \mu_{k}^{T} \mathbf{\Sigma}_{k}^{-1} \mu_{k} + \log \pi_{k}$$

- class boundaries are now quadratic curves
- we fit a different covariance matrix estimate per class
- LDA has (2K + p + 1)p/2 parameters,
- QDA has Kp(p+3)/2 parameters

Example

V

- for p = 4, K = 2, LDA has 18 parameters, QDA has 28 parameters
- for p = 8, K = 2, LDA has 52 parameters, QDA has 88 parameters

Example LDA vs. QDA

Two-class problem with $\Sigma_1 = \Sigma_2$ QDA overtrains

QDA decision boundary

V

Two-class problem with $\Sigma_1 \neq \Sigma_2$ LDA overtrains

- LDA decision boundary
- QDA decision boundary

Fitting LDA and QDA Models

Again, we use sample estimates

- $\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i=k} x_i$
- $\widehat{\boldsymbol{\Sigma}} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{i: y_i=k} (x_i \hat{\mu}_k) (x_i \hat{\mu}_k)^T$
- $\widehat{\boldsymbol{\Sigma}}_k = \frac{1}{n_k K} \sum_{i: y_i = k} (x_i \hat{\mu}_k) (x_i \hat{\mu}_k)^T$
- $\pi_k = n_k/n$

To simplify calculation we use the eigenvalue decomposition of the covariance matrices $\widehat{\Sigma}_{k} = U_{k}D_{k}U_{k}^{T}$

- \boldsymbol{u}_k is a $p \times p$ orthonormal matrix
- *D_k* is a diagonal matrix of decreasing positive eigenvalues *d_{kl}*

The main terms in the discriminants, $\delta_k(x) = -\frac{1}{2} \log |\widehat{\Sigma}_k| - \frac{1}{2} (x - \mu_k)^T \widehat{\Sigma}_k^{-1} (x - \mu_k) + \log \pi_k$

then turn into

$$\log |\widehat{\boldsymbol{\Sigma}}_k| = \sum_l \log d_{kl}$$
$$(x - \hat{\mu}_k)^T \widehat{\boldsymbol{\Sigma}}_k^{-1} (x - \hat{\mu}_k) = \left[\boldsymbol{U}_k^T (x - \hat{\mu}_k) \right]^T D_k^{-1} \left[U_k^T (x - \hat{\mu}_k) \right]$$

The LDA estimator

- Step 1: Normalize X to spherical covariance $X^* \leftarrow D^{-1/2} U^T X$
- Step 2: Classify to the closest class centroid in the transformed space, where distance is weighted by the class prior probabilities π_k

Comparing Different Classifiers

We now know four classifiers: *k*-NN, LDA, QDA and logistic regression

when should we use which?

Logistic regression and LDA are surprisingly closely related

- univariate binary setting
- log-odds for LDA are (difference of two linear discriminants)
- while for logistic regression

$$\log \frac{p_1(x)}{1 - p_1(x)} = \beta_0 + \beta_1 x$$

 $\log \frac{p_1(x)}{1 - p_1(x)} = c_0 + c_1 x$

 $p_2(x) = 1 - p_1(x)$

Similar, but different

- β_0 and β_1 are maximum likelihood estimates
- c_0 and c_1 are estimated from sample mean and variance of Gaussian distribution
- relationship extends to multivariate data: LR and LDA often give similar results but not always!
- LDA makes stronger assumptions

We now know four classifiers: *k*-NN, LDA, QDA and logistic regression

• when should we use which?

k-NN is nonparametric and tends to work better for strongly nonlinear settings

• it does not allow for inference, i.e. we do not get a model that we can learn from

QDA is a compromise between LDA and k-NN

Scenario 1

- 100 random training data sets, p = 2 predictors, K = 2 classes
- 20 observations per class
- observations in different classes uncorrelated normal variables with different means and the same variance (spherical Gaussian)
- this matches the LDA assumptions of LDA

Observations

- LDA works very well
- logistic regression assumes a linear decision boundary, performs only slightly worse than LDA
- *k*-NN overtrains, as does QDA

Scenario 1

Scenario 2

- 100 random training data sets, p = 2 predictors, K = 2 classes
- like scenario 1, but predictors in each class now have a correlation of -0.5 (elliptical multivariate Gaussian)

Observations

relative performances are similar to scenario 1

Scenario 3

- 100 random training data sets, p = 2 predictors, K = 2 classes
- X₁ and X₂ are generated using a *t*-distribution
- more extreme points than with a Gaussian
- decision boundary is linear, but, setup violates LDA assumption

Observations

- logistic regression performs best
- QDA deteriorates because of non-normality of the data

Scenario 4

- 100 random training data sets, p = 2 predictors, K = 2 classes
- class 1: normal distribution with correlation **0.5** to predictors
- class 2: normal distribution with correlation -0.5 to predictors
- assumptions of QDA are met (but not LDA!)

Observations

QDA outperforms all other methods

Scenario 5

- 100 random training data sets, p = 2 predictors, K = 2 classes
- two normal distributions with uncorrelated predictors
- inputs X_1^2 , X_2^2 and X_1X_2 , not X_1 and X_2
- the decision boundary is quadratic

Observations

- QDA performs best
- *k*NN (CV) follows closely
- the linear methods all perform poorly

Scenario 6

- 100 random training data sets, p = 2 predictors, K = 2 classes
- like 5, but responses sampled from a complicated linear function

Observations

- even QDA cannot model data well
- k-NN-1 overtrains
- k-NN (CV) outperforms all parametric approaches
- smoothness must be chosen carefully

