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IV

Classification  Discriminative vs. Generative

Discriminative Generative

Output for an input 𝑥 estimate "𝑔 𝑥 of class 𝑔(𝑥)
probability distribution {𝑝! 𝑥 ∣ 𝑔 ∈ 𝐺},

𝑝!(𝑥) is the probability that 𝑥 belongs to class 𝑔

Main idea
the classifier returns an estimate of the 
output, which discriminates between 

different classes
the classifier generates the output 

with some probability 

Performance measure
loss function that measures the deviation

between estimate and output, 
e.g. 0-1 loss

(log-)likelihood of the estimator 
generating the output ∑"#$% log 𝑝!!(𝑥)

Optimization problem Minimize the loss function Maximize the likelihood
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Bayesian Classification

Bayesian Methods
§ Bayes’ formula

Pr 𝑌 𝑋 =
Pr 𝑋 𝑌 Pr 𝑌

Pr 𝑋
§ Pr 𝑋 is a normalizing constant that only depends on the input data and often need not be computed

Bayesian classification for 𝐾 classes
§ use Bayes’ formula to determine posterior density per class Pr 𝑌 = 𝑘 𝑋 = 𝑥

𝑝! 𝑥 = Pr 𝑌 = 𝑘 𝑋 = 𝑥 =
𝜋!𝑓! 𝑥

∑ℓ#$% 𝜋ℓ𝑓ℓ 𝑥
§ we compute 𝑝!(𝑥) by estimating the class prior probabilities 𝜋! and the class densities 𝑓!(𝑋)
§ we estimate the prior class probabilities from data, 𝜋! =

$
&
∑'#$& 𝐼(𝑦' = 𝑘)

§ we somehow determine the probability density for point 𝑥 for a class 𝑘
§ we then classify each point to its most probable class

(ESL 4.4.1)V

Posterior (probability of the output given the input)
Prior probability of the input

Probability of the input, given the output, i.e. class density

Prior probability of the output
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Linear Discriminant Analysis

Model assumptions
§ every class is Gaussian-distributed

𝑓& 𝑥 =
1
2𝜋𝜎&

exp −
1
2𝜎&'

𝑥 − 𝜇& '

§ all classes have the same variance 
𝜎$' = 𝜎'' = ⋯ = 𝜎&' = 𝜎'

The Bayesian classifier now becomes

𝑝! 𝑥 =
𝜋!𝑓! 𝑥

∑ℓ#$% 𝜋ℓ𝑓ℓ 𝑥
=

𝜋!
1
2𝜋𝜎!

exp − 1
2𝜎!&

𝑥 − 𝜇! &

∑'#$% 𝜋'
1
2𝜋𝜎&

exp − 1
2𝜎& 𝑥 − 𝜇' &

§ the logarithm of the numerator
−
𝑥&

2𝜎&
+ 𝑥 ⋅

𝜇!
𝜎&

−
𝜇!&

2𝜎&
+ log𝜋! − log 2𝜋𝜎

(ESL 4.4.1)V 4



Linear Discriminant Analysis

The Bayes-optimal choice is to classify 𝑥 to the class with the largest discriminant
§ the discriminant of a class 𝑘 is the log-probability that cancels in the log odds

log
𝑝& 𝑥
𝑝( 𝑥

= 𝛿& 𝑥 − 𝛿( 𝑥

§ where

𝛿& 𝑥 = 𝑥 ⋅
𝜇&
𝜎' −

𝜇&'

2𝜎' + log𝜋&

is the log-numerator from previous slide with the class-independent terms removed

(ESL 4.4.1)V 5



Example Linear Discriminant Analysis

If 𝜋? = 𝜋@ we classify an observation 𝑥 to class 1 if
2𝑥 𝜇$ − 𝜇' > 𝜇$' − 𝜇''

§ the Bayes decision boundary is the set of points for which 
both discriminants are equal, i.e.

𝑥 =
𝜇$' − 𝜇''

2 𝜇$ − 𝜇'
=
𝜇$ + 𝜇'

2

§ the figure shows two 1D normal density functions. 
§ the dashed line represents the Bayes decision boundary, at 

which an observation is equally likely to belong to either class

(ESL 4.4.1)V
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𝜇! = −1.25
𝜇" = 1.25
𝜎! = 𝜎" = 1
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Fitting Univariate LDA Models

In general, we do not know the underlying class densities
§ we estimate these using the finite training sample

"𝜇& =
1
𝑛&

C
":*!#&

𝑥"

"𝜎' =
1

𝑛 − 𝐾C
&#$

+

C
":*!#&

𝑥" − "𝜇& '

𝜋 = 𝑛&/𝑛
§ we assign 𝑥 to the class with the largest fitted discriminant

F𝛿& 𝑥 = 𝑥 ⋅
"𝜇&
"𝜎'
−

"𝜇&'

2 "𝜎'
+ log "𝜋&

§ note that the discriminants are linear (!)

(ESL 4.4.1)V

LDA	fit	over	20	samples	per	class,	
fitted	decision	boundary	in	dashed	black.	
Bayes	error	10.6%,	LDA	test	error	11.1%
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Multivariate LDA

Model assumptions
§ each class is a multivariate Gaussian
§ the covariance matrix is the same for all classes

𝑓& , =
1

2𝜋
-
' 𝚺

$
'
exp −

1
2 𝑥 − 𝜇& .𝚺/$ 𝑥 − 𝜇&

𝛿& 𝑥 = 𝑥.𝚺/$𝜇& −
1
2
𝜇&.𝚺/$𝜇& + log𝜋&

§ 𝚺 is the 𝑝×𝑝 covariance matrix of the inputs 𝚺 = Cov(𝑥)

(ESL 4.4.3)V

Multivariate	Gaussian	with	
two	uncorrelated	predictors
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Multivariate	Gaussian	with	
two	correlated	predictors	(0.7)



Multivariate LDA

Model assumptions
§ each class is a multivariate Gaussian
§ the covariance matrix is the same for all classes

𝑓& , =
1

2𝜋
-
' 𝚺

$
'
exp −

1
2 𝑥 − 𝜇& .𝚺/$ 𝑥 − 𝜇&

𝛿& 𝑥 = 𝑥.𝚺/$𝜇& −
1
2
𝜇&.𝚺/$𝜇& + log𝜋&

§ 𝚺 is the 𝑝×𝑝 covariance matrix of the inputs 𝚺 = Cov(𝑥)

(ESL 4.4.3)V

2D	synthetic	data	example	with	three	classes.
Ellipses	contain	95%	of	the	class	probability	mass,

the	Bayes	decision	boundaries	are	dashed
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Multivariate LDA

Model assumptions
§ each class is a multivariate Gaussian
§ the covariance matrix is the same for all classes

𝑓& , =
1

2𝜋
-
' 𝚺

$
'
exp −

1
2 𝑥 − 𝜇& .𝚺/$ 𝑥 − 𝜇&

𝛿& 𝑥 = 𝑥.𝚺/$𝜇& −
1
2
𝜇&.𝚺/$𝜇& + log𝜋&

§ 𝚺 is the 𝑝×𝑝 covariance matrix of the inputs 𝚺 = Cov(𝑥)
§ model is fitted using sample estimates similar to the 1D case
§ 𝜇 easy, but 𝚺 is the hardest to estimate

(ESL 4.4.3)V

LDA	fit	of	data	set	comprising	20	samples
from	each	class,	decision	boundary	in	black
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Multivariate LDA

Example default	with balance and student as inputs
§ training error for LDA is 2.75%
§ data is highly unbalanced, we have only 3,33% positives
§ the No-only classifier has an error of already only 3,33%

Sensitivity Sens	=	𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) = 𝑇𝑃/𝑃∗

§ fraction of correctly predicted positives

Specificity Spec	=	𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) = 𝑇𝑁/𝑁∗

§ fraction of correctly predicted negatives

§ No Sens	= 1
222

= 0% , Spec= 3,556
3,556

= 100%

§ LDA Sens= 7$
222

= 24.3% , Spec= 3,588
3,556

= 99.8%

§ LDA approximates the Bayes classifier, 
it minimizes error on all observations

(ESL 4.4.3)V

Prediction
True Default Status

No (−)           Yes (+)                 Total

No (−) 9,644 252 9,896

Yes (+) 23 81 104

Total 9,667 333 10,000

Confusion	matrix

LDA	Model	Results

Prediction
True Default Status

No (−)            Yes (+)                Total

No (−) TN FN 𝑁

Yes (+) FP TP 𝑃

Total 𝑁∗ 𝑃∗ 𝑛

Type-1 error
False positive Type-2 error

False negative
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Types of Errors – a handy guide

V

Type II error
(false negative)

Type I error
(false positive)
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Multivariate LDA

Biasing the classifier trades sensitivity for specificity
log >𝑝! 𝑥 𝑝) 𝑥 = 𝛿! 𝑥 − 𝛿)(𝑥)

§ move the decision threshold between class no or yes from
Pr 𝐝𝐞𝐟𝐚𝐮𝐥𝐭 = yes 𝑋 = 𝑥 = 0.5

§ we can increase sensitivity by choosing
Pr 𝐝𝐞𝐟𝐚𝐮𝐥𝐭 = yes 𝑋 = 𝑥 < 0.5
as this assigns more points to class yes

§ for Pr 𝐝𝐞𝐟𝐚𝐮𝐥𝐭 = yes 𝑋 = 𝑥 < 0.2
g Sens	=	195/333 = 58.6%
g Spec	=	9,432/9,667 = 97.6%
g Error	=	373/10,000 = 3.73%

(ESL 4.4.3)V

For	a	threshold	of	0.5	we	get
Sens	=	24.3%,	Spec	=	99.8%,	Error=2.75%

While	for	a	threshold	of	0.2	we	have
Sens	=	58.6%,	Spec	=	97.6%,	Error=3.73%

Prediction
True Default Status

No (−)           Yes (+)                 Total

No (−) 9,644 252 9,896

Yes (+) 23 81 104

Total 9,667 333 10,000

Prediction
True Default Status

No (−)            Yes (+)                Total

No (−) 9,432 138 9,570

Yes (+) 235 195 430

Total 9,667 333 10,000
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Multivariate LDA

Biasing the classifier trades sensitivity for specificity
log >𝑝! 𝑥 𝑝) 𝑥 = 𝛿! 𝑥 − 𝛿)(𝑥)

§ move the decision threshold between class no or yes from
Pr 𝐝𝐞𝐟𝐚𝐮𝐥𝐭 = yes 𝑋 = 𝑥 = 0.5

§ we can increase sensitivity by choosing
Pr 𝐝𝐞𝐟𝐚𝐮𝐥𝐭 = yes 𝑋 = 𝑥 < 0.5
as this assigns more points to class yes

§ for Pr 𝐝𝐞𝐟𝐚𝐮𝐥𝐭 = yes 𝑋 = 𝑥 < 0.2
g Sens	=	195/333 = 58.6%
g Spec	=	9,432/9,667 = 97.6%
g Error	=	373/10,000 = 3.73%

§ error rates change smoothly when we move the threshold

(ESL 4.4.3)V
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ROC Curves

Receiver-Operating Characteristic (ROC) curves 
plot 𝑆𝑒𝑛𝑠 against 1 − 𝑆𝑝𝑒𝑐 for all thresholds
§ Area Under the ROC-Curve (AUC) measures the quality of 

a classifier independent of the choice of that threshold
§ optimally 𝑆𝑝𝑒𝑐 = 𝑆𝑒𝑛𝑠 = 1 for any threshold (𝐴𝑈𝐶 = 1)
§ random classifier performs on the diagonal (𝐴𝑈𝐶 = 0.5)
§ if the ROC curve goes below the diagonal, we can 

improve accuracy by inverting the classifier

ROC curves are not influenced by imbalance of the data
§ balance only affects locations of a threshold along the curve

V

=
𝑆𝑒
𝑛𝑠

= 𝟏 – 𝑺𝒑𝒆𝒄

High threshold

Low threshold

Threshold=0.5

AUC=0.95
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Quadratic Discriminant Analysis (QDA)

We give up the assumption that the covariances of all classes are all the same

For QDA we have

𝑓! * = $

+,
D
E 𝚺F

G
E
exp − $

+
𝑥 − 𝜇! .𝚺!/$ 𝑥 − 𝜇!

𝛿! 𝑥 = − $
+
𝑥.𝚺!/$𝑥 + 𝑥.𝚺!/$𝜇! −

$
+
𝜇!.𝚺!/$𝜇! + log𝜋!

V

For LDA we had
𝑓! * = $

+,
D
E 𝚺

G
E
exp − $

+
𝑥 − 𝜇! .𝚺/$ 𝑥 − 𝜇!

𝛿! 𝑥 = 𝑥.𝚺/$𝜇! −
$
+
𝜇!.𝚺/$𝜇! + log𝜋!
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Quadratic Discriminant Analysis (QDA)

We give up the assumption that the covariances of all classes are all the same

For QDA we have

𝑓! * = $

+,
D
E 𝚺F

G
E
exp − $

+
𝑥 − 𝜇! .𝚺!/$ 𝑥 − 𝜇!

𝛿! 𝑥 = − $
+
𝑥.𝚺!/$𝑥 + 𝑥.𝚺!/$𝜇! −

$
+
𝜇!.𝚺!/$𝜇! + log𝜋!

V

For LDA we had
𝑓! * = $

+,
D
E 𝚺

G
E
exp − $

+
𝑥 − 𝜇! .𝚺/$ 𝑥 − 𝜇!

𝛿! 𝑥 = 𝑥.𝚺/$𝜇! −
$
+
𝜇!.𝚺

/$𝜇! + log𝜋!
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Quadratic Discriminant Analysis (QDA)
In QDA every class has its own covariance matrix

𝑓! * = $

+,
D
E 𝚺F

G
E
exp − $

+
𝑥 − 𝜇! .𝚺!/$ 𝑥 − 𝜇!

𝛿! 𝑥 = − $
+
𝑥.𝚺!/$𝑥 + 𝑥.𝚺!/$𝜇! −

$
+
𝜇!.𝚺!/$𝜇! + log𝜋!

§ class boundaries are now quadratic curves
§ we fit a different covariance matrix estimate per class
§ LDA has (2𝐾 + 𝑝 + 1)𝑝/2 parameters, 
§ QDA has 𝐾𝑝(𝑝 + 3)/2 parameters

Example
§ for 𝑝 = 4,𝐾 = 2, LDA has 18 parameters, QDA has 28 parameters
§ for 𝑝 = 8,𝐾 = 2, LDA has 52 parameters, QDA has 88 parameters

(ESL 4.4.3)V 18



Example LDA vs. QDA

(ESL 4.4.3)V

𝑐𝑜𝑟𝑟 = 0.7

𝑋!

𝑋 "

𝑐𝑜𝑟𝑟 = 0.7

Bayes	decision	boundary
LDA	decision	boundary
QDA	decision	boundary

𝑐𝑜𝑟𝑟 = 0.7

𝑋!

𝑋 "

Bayes	decision	boundary
LDA	decision	boundary
QDA	decision	boundary

𝑐𝑜𝑟𝑟 = 0.7
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Two-class	problem	with	𝛴$ = 𝛴'
QDA	overtrains

Two-class	problem	with	𝛴$ ≠ 𝛴'
LDA	overtrains



Fitting LDA and QDA Models

Again, we use sample estimates
§ �̂�& =

$
%F
∑":*I#& 𝑥"

§ &𝚺 = $
%/+

∑&#$+ ∑":*I#& 𝑥" − �̂�& 𝑥" − �̂�& .

§ &𝚺& =
$

%F/+
∑":*I#& 𝑥" − �̂�& 𝑥" − �̂�& .

§ 𝜋& = 𝑛&/𝑛

To simplify calculation we use the eigenvalue 
decomposition of the covariance matrices

&𝚺& = 𝑼&𝑫&𝑼&.

§ 𝑼& is a 𝑝×𝑝 orthonormal matrix
§ 𝑫& is a diagonal matrix of decreasing

positive eigenvalues 𝑑!)

(ESL 4.3.2)V

The main terms in the discriminants,
𝛿& 𝑥 = −

1
2 log

&𝚺& −
1
2 𝑥 − 𝜇& .&𝚺&/$ 𝑥 − 𝜇& + log𝜋&

then turn into
log &𝚺& =5

(

log 𝑑&(

𝑥 − �̂�& . 7Σ&/$ 𝑥 − �̂�& = 𝑼&. 𝑥 − �̂�&
.𝐷&/$ 𝑈&. 𝑥 − �̂�&

The LDA estimator
§ Step 1: Normalize 𝑋 to spherical covariance

𝑋∗ ← 𝑫/$/'𝑼.𝑋
§ Step 2: Classify to the closest class centroid in the 

transformed space, where distance is weighted 
by the class prior probabilities 𝜋𝑘
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Comparing Different Classifiers

V 21



Comparison of the Classification Methods
We now know four classifiers: 𝑘-NN, LDA, QDA and logistic regression
§ when should we use which?

Logistic regression and LDA are surprisingly closely related
§ univariate binary setting 𝑝'(𝑥) = 1 − 𝑝$(𝑥)

§ log-odds for LDA are log -" ,
$/-"(,)

= 𝑐5 + 𝑐$𝑥

(difference of two linear discriminants)
§ while for logistic regression log -" ,

$/-" ,
= 𝛽5 + 𝛽$𝑥

Similar, but different
§ 𝛽0 and 𝛽$ are maximum likelihood estimates
§ 𝑐0 and 𝑐$ are estimated from sample mean and variance of Gaussian distribution
§ relationship extends to multivariate data: LR and LDA often give similar results – but not always!
§ LDA makes stronger assumptions

V 22



Comparison of the Classification Methods
We now know four classifiers: 𝑘-NN, LDA, QDA and logistic regression
§ when should we use which?

k-NN is nonparametric and tends to work better for strongly nonlinear settings
§ it does not allow for inference, i.e. we do not get a model that we can learn from

QDA is a compromise between LDA and 𝑘-NN

V 23



Comparing the Classification Methods

Scenario 1
§ 100 random training data sets, 𝑝 = 2 predictors, 𝐾 = 2 classes
§ 20 observations per class
§ observations in different classes uncorrelated normal variables 

with different means and the same variance (spherical Gaussian)
§ this matches the LDA assumptions of LDA

Observations
§ LDA works very well
§ logistic regression assumes a linear decision boundary, 

performs only slightly worse than LDA
§ 𝑘-NN overtrains, as does QDA
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Comparing the Classification Methods

Scenario 2
§ 100 random training data sets, 𝑝 = 2 predictors, 𝐾 = 2 classes
§ like scenario 1, but predictors in each class now have a 

correlation of −0.5 (elliptical multivariate Gaussian)

Observations
§ relative performances are similar to scenario 1
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Comparing the Classification Methods

Scenario 3
§ 100 random training data sets, 𝑝 = 2 predictors, 𝐾 = 2 classes
§ 𝑋$ and 𝑋+ are generated using a 𝒕-distribution
§ more extreme points than with a Gaussian 
§ decision boundary is linear, but, setup violates LDA assumption

Observations
§ logistic regression performs best
§ QDA deteriorates because of non-normality of the data
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Comparing the Classification Methods

Scenario 4
§ 100 random training data sets, 𝑝 = 2 predictors, 𝐾 = 2 classes
§ class 1: normal distribution with correlation 0.5 to predictors
§ class 2: normal distribution with correlation −0.5 to predictors
§ assumptions of QDA are met (but not LDA!)

Observations
§ QDA outperforms all other methods 
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Comparing the Classification Methods

Scenario 5
§ 100 random training data sets, 𝑝 = 2 predictors, 𝐾 = 2 classes
§ two normal distributions with uncorrelated predictors
§ inputs 𝑋$+, 𝑋++ and 𝑋$𝑋+, not 𝑋$ and 𝑋+
§ the decision boundary is quadratic

Observations
§ QDA performs best
§ 𝑘NN (CV) follows closely
§ the linear methods all perform poorly
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Comparing the Classification Methods

Scenario 6
§ 100 random training data sets, 𝑝 = 2 predictors, 𝐾 = 2 classes
§ like 5, but responses sampled from a complicated linear function

Observations
§ even QDA cannot model data well
§ 𝑘-NN-1 overtrains
§ 𝑘-NN (CV) outperforms all parametric approaches
§ smoothness must be chosen carefully
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