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Validation

To estimate how well a model generalizes, we should test on different data than we trained on

The most basic approach is to randomly divide the data into two
§ we fit our models using the training data
§ we estimate the generalization error (aka test error) on the test data (aka hold-out set)
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Example Validation
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Validation Set Approach

Observations
1. test error can vary widely
2. quadratic term affords large improvement of test error
3. higher-order terms not of benefit

Problems
1. high variability of estimated test error
2. training set becomes smaller; 

model may be suboptimal (undertrained); 
test error may be overestimated
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Repeating the experiment allows for determining
the distributive quality of the test error

Validation	error	for	one	random	50-50	
splits	into	training	and	validation	set



Leave-one-out Cross Validation (LOOCV)

Key idea: set only one data point aside for testing
§ training set is now as large as can be, so little bias
§ but, only one point to test on, so high variance

Repeating for every data point averages out variance
𝑀𝑆𝐸! = 𝑦! − '𝑦! "

𝐶𝑉($) =
1
𝑛,
!&'

$

𝑀𝑆𝐸!

§ process is deterministic, repeating always gives same result
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Leave-one-out Cross Validation (LOOCV)

Key idea: set only one data point aside for testing
§ training set is now as large as can be, so little bias
§ but, only one point to test on, so high variance

Repeating for every data point averages out variance
𝑀𝑆𝐸! = 𝑦! − '𝑦! "

𝐶𝑉($) =
1
𝑛,
!&'

$

𝑀𝑆𝐸!

§ process is deterministic, repeating always gives same result
§ for least-squares linear or polynomial regression we have

𝐶𝑉 $ =
1
𝑛,
!&'

$
𝑦! − '𝑦!
1 − ℎ!

"

(ℎ! is the leverage statistic from Lecture 3)VI 7

M
ea

n 
Sq

ua
re

d 
Er

ro
r

20
24

22
18

42 6

16

8 10

Degree of Polynomial

26
28 validation set (50/50)

LOOCV



𝑘-fold Cross Validation

Randomly divide the data into 𝑘 folds
§ train on 𝑘– 1 folds, test on the remaining 1 fold
§ repeat such that all folds have been tested on
§ gives 𝑘 estimates of the test error, the final estimate is

𝐶𝑉 ) =
1
𝑘,
!&'

)

𝑀𝑆𝐸!

§ in practice, we use 𝑘 = 5 or 10
§ LOOCV is 𝑘-fold CV with 𝑘 = 𝑛– 1
§ 𝑘-fold CV is more efficient but has higher bias than LOOCV
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𝑘-fold Cross Validation

Randomly divide the data into 𝑘 folds
§ train on 𝑘– 1 folds, test on the remaining 1 fold
§ repeat such that all folds have been tested on
§ gives 𝑘 estimates of the test error, the final estimate is

𝐶𝑉 ) =
1
𝑘,
!&'

)

𝑀𝑆𝐸!

§ in practice, we use 𝑘 = 5 or 10
§ LOOCV is 𝑘-fold CV with 𝑘 = 𝑛– 1
§ 𝑘-fold CV is more efficient but has higher bias than LOOCV

We can reduce variance of the CV-estimated error by 
averaging the over different (e.g. 10) random splits
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Example almost-linear data
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Example moderately non-linear data

(ISL 5.1.3)VI 11

Flexibility
(degrees of freedom, or dof)

M
ea

n 
Sq

ua
re

d 
Er

ro
r

1.
0

2.
0

2.
5

1.
5

0.
5

52 2010

0.
0

True function
10-fold CV
LOOCV

Cross-validation	
often	underestimates

the	test	error

M
ea

n 
Sq

ua
re

d 
Er

ro
r

6
10

12
8

4

200 6040

2

80 100

True function
linear model
smooth splines
rugged splines

𝑋



Example highly non-linear data
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𝑘-fold Cross Validation

We are often not only interested in
the test error itself, but even more interested in
the location of the minimum, as that shows 
the complexity of the optimal model
§ test errors vary so minimum is difficult to identify
§ use CV to estimate variance of the test error!
§ many different models have almost the same error

General rule: 
Choose the simplest model within 
1 standard error of the optimum
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𝑘-fold Cross Validation

We are often not only interested in
the test error itself, but even more interested in
the location of the minimum, as that shows 
the complexity of the optimal model
§ test errors vary so minimum is difficult to identify
§ use CV to estimate variance of the test error!
§ many different models have almost the same error

General rule: 
Choose the simplest model within 
1 standard error of the optimum
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Bias-Variance Tradeoff for 𝑘-fold CV

𝑘-fold CV often gives more accurate error estimates than LOOCV
§ this is due to the bias-variance tradeoff

Increasing the relative size of the training set reduces bias but increases variance
§ LOOCV averages over models trained on almost the same data: all estimates are highly correlated
§ 𝑘-fold CV has less overlap in training data, and hence less correlated estimates

The variance of the average over the outcomes of 𝑘 identically distributed events with 
correlation 𝜌, each with variance 𝜎/ is 

𝜌𝜎/ +
1 − 𝜌
𝑘 𝜎/
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Example Cross Validation for Classification
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Test	error	(true)	for	Logistic	Regression	on	synthetic	data	
(Bayes	error	0.11)

Logistic	Regression
degree	=	1

log
𝑝

1 − 𝑝 = 𝛽# + 𝛽!𝑋! + 𝛽"𝑋"

test	error	0.201

Quadratic	Logistic	Regression
degree	=	2

log
𝑝

1 − 𝑝
= 𝛽# + 𝛽!𝑋! + 𝛽"𝑋!" + 𝛽$𝑋" + 𝛽%𝑋""

test	error	0.197

Qubic Logistic	Regression
degree	=	3

log
𝑝

1 − 𝑝
= 𝛽# + 𝛽!𝑋! + 𝛽"𝑋!" + 𝛽$𝑋!$ +⋯

test	error	0.160

Quartic	Logistic	Regression
degree	=	4

log
𝑝

1 − 𝑝
= 𝛽# + 𝛽!𝑋! + 𝛽"𝑋!" + 𝛽$𝑋!$ + 𝛽%𝑋!% +⋯

test	error	0.162



Example Cross Validation for Classification
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Doing Cross Validation Right

Assume a scenario with many predictors

How we typically build a model
1. select the predictors with strongest 

univariate correlation with the output
2. build a multivariate model on these predictors
3. use CV to select the model parameters

Now, let’s assume we get
§ 𝑁 = 50 samples, two balanced classes
§ 𝑝 = 5000 continuous-valued Gaussian 

predictors, independent of class labels

The true test error of any classifier is 50%

(ESL 7.10.2)VI 18

Let’s build that model!
1. select 100 predictors in step 1
2. use 1-NN classifier on these predictors
3. do CV in 50 simulations to estimate test error

Resulting average test error is 3%
§ what? how? why? what is this? I don’t even?
§ the predictors we chose have an unfair

advantage, as we chose them over all data,
rather than over just the training data

§ Always keep training and test set separate!

Right Wrong



Doing Cross Validation Wrong

The Wrong Way
1. select the 100 predictors most correlated with 

the outcome variable using all 𝑛 samples
2. choose a random set of 10 samples
3. compute correlations of selected predictors 

with the output over just these 10 samples

Mean correlation of selected predictors with outcome is 28%
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Doing Cross Validation Right

The Right Way
1. divide samples into 𝐾 classes (𝐾-fold CV)
2. for each 𝑘=1,…, 𝐾 do

1. find that subset of predictors most correlated with 
the outcome on all samples except those in fold 𝒌

2. use these predictors to build multivariate model
3. use classifier to predict classes of samples in fold 𝑘

3. accumulate errors on all 𝐾 folds to compute correlation

In a multistep procedure, we have to apply 
cross-validation to entire sequence of steps!
§ initial clustering can be done before samples are left 

out (because it does not use class labels), e.g. select 50 
predictors with highest variances across the training set

(ESL 7.10.2)VI 20



Train-Validation-Test Paradigm

More conservatively, we can divide the data three-way
1. training set for fitting models
2. validation set for comparatively assessing model performance in order to select a model
3. test set in order to assess the performance of the selected model

(ESL 7.2)VI 21
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Nested Cross Validation

Purpose: optimize hyper-parameters first,
then assess performance of the best model
§ inner cross validation for tuning hyper-parameters 

and model selection
§ outer cross validation for evaluating performance 

of the final model

Provides more conservative error estimates than 
normal cross-validation
§ different test sets for selecting model parameters and 

assessing model performance

(https://mlr-org.github.io/mlr-tutorial/devel/html/nested_resampling/index.html)VI 22



ISLR 5.2, ESL 7.11
The Bootstrap
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The Bootstrap

Bootstrap is used to quantify the uncertainty of a given estimator
§ for linear least-squares regression, we already saw theoretical methods (and software) for doing so
§ the bootstrap is applicable to all kinds of methods for which no theory exists

Toy example
§ we want to invest a fixed sum in two assets that yield returns 𝑋 and 𝑌, fraction 𝛼 in 𝑋 and 1 − 𝛼 in 𝑌
§ we want to choose 𝛼 such that we minimize the total risk (variance) of the investment Var 𝛼𝑋 + 1 − 𝛼 𝑌

𝛼 =
𝜎+, − 𝜎-+

𝜎-, + 𝜎+, − 2𝜎-+

𝜎*" = Var(𝑋) 𝜎+" = Var 𝑌 𝜎*+ = Cov 𝑋, 𝑌

§ our estimate of 𝛼 will hence depend on the sample estimates of the variances

'𝛼 =
'𝜎+" − '𝜎*+

'𝜎*" + '𝜎+" − 2 '𝜎*+
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The Bootstrap

(ISLR 5.2)VI 25

What	are	the	estimates	of	𝛼 when	we	repeatedly	draw	100	samples?



The Bootstrap

We repeat the process 1000 times, 
obtaining estimates 𝛼?, 𝛼/, … , 𝛼?@@@

A𝛼 =
1

1,000
,
,&'

',...

'𝛼, = 0.5996

𝑆𝐸 '𝛼 =
1

1,000 − 1 ,
,&'

',...

'𝛼, − 𝛼 " = 0.083

In a real setting, we cannot get new samples
§ but, we can re-sample from the training data
§ we draw uniformly and with replacement

𝐵 = 1000 samples 𝑍∗! each of size 𝑛
§ then 

𝑆𝐸0 12 = '
03'

∑,&'0 '𝛼∗, − '
0
∑,-&'
0 '𝛼∗,-

"
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Example The Bootstrap
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Bootstrap	on	a	data	set	of	3	rows

Obs X Y

1 4.3 2.4

2 2.1 1.1

3 5.3 2.8

Obs X Y

3 5.3 2.8

1 4.3 2.4

3 5.3 2.8

Obs X Y

2 2.1 1.1

3 5.3 2.8

1 4.3 2.4

Obs X Y

2 2.1 1.1

2 2.1 1.1

1 4.3 2.4

Original	Data	
(Z)

𝑍∗1

𝑍∗,

𝑍∗2

(𝛼∗1

(𝛼∗,

(𝛼∗2

⋮ ⋮



The Bootstrap

Bootstrap samples tend to contain only a subset of the training data
§ some of the training observations will occur multiple times in a bootstrap set
§ we have compute the probability of an observation being selected into a bootstrap set as

Pr{observation 𝑖 ∈ bootstrap sample 𝑏} = 1 − 1 −
1
𝑛

0

≈ 1 − 𝑒12 = 0.632

On average, about a third of the data is not contained in a bootstrap sample
§ we should test the model on these out-of-bag samples, mimicking 3-fold CV
§ if we do include in-bag samples, training and test set overlap, and we will underestimate the test error

Bootstrap samples are highly correlated, which increases the variance of the error estimate
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Conclusion for today

To estimate how well a model generalizes, we have to test on other data than it was trained on 

Resampling or subsampling are methods for repeatedly drawing samples from training data to
§ learn about the variability of the fitted models, as the training set changes (model variability)
§ assess the test error which is hard to estimate (model assessment)
§ optimize model performance in terms of test error (model selection)

Resampling methods can be computationally expensive
§ repeated model fitting on a potentially large number of data sets
§ today’s computing power allows for this expense
§ but not when your model is extremely expensive (looking at you, Deep Learning)
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