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▪ Validation
 To estimate how well a model generalizes, we should test on different data than we trained on.

 Therefore one can divide the data into 2 parts, train and validation data. However, a more 

conservative pipeline is to have a 3 way division of train, validation and test.  
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Train-Validation-Test Paradigm

More conservatively, we can divide the data three-way

1. training set for fitting models

2. validation set for comparatively assessing model performance in order to select a model

3. test set in order to assess the performance of the selected model
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▪ Leave-one-out Cross Validation (LOOCV)
 Idea is to leave one point from data aside to test. Large train data means little bias in training but test 

data is small so high variance.
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Leave-one-out Cross Validation (LOOCV)

Key idea: set only one data point aside for testing

▪ training set is now as large as can be, so little bias

▪ but, only one point to test on, so high variance

Repeating for every data point averages out variance
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▪ process is deterministic, repeating always gives same result

▪ for least-squares linear or polynomial regression we have
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▪ K-Fold Cross Validation
 Divide the training data into random 𝑘 folds, train on 𝑘-1 folds and validate on held out data. 

 Larger relative size of training data reduces bias but increases the variance due to smaller val data.  
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𝑘-fold Cross Validation

Randomly divide the data into 𝑘 folds

▪ train on 𝑘– 1 folds, test on the remaining 1 fold

▪ repeat such that all folds have been tested on

▪ gives 𝑘 estimates of the test error, the final estimate is
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▪ in practice, we use 𝑘 = 5 or 10

▪ LOOCV is 𝑘-fold CV with 𝑘 = 𝑛– 1

▪ 𝑘-fold CV is more efficient but has higher bias than LOOCV

▪ In general due to bias variance tradeoff, 𝑘-fold CV often gives 

more accurate error estimates than LOOCV! Since 𝑘-fold CV 

has less overlap in training data, and hence less correlated 

estimates
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▪ Bootstrap 
 Bootstrap is used to quantify the uncertainty of a given estimator

 Is applicable to all kinds of methods for which no theory exists
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Bootstrap

(ISLR 5.2)VI 9

Bootstrap on a data set of 3 rows

Obs X Y

1 4.3 2.4

2 2.1 1.1

3 5.3 2.8

Obs X Y

3 5.3 2.8

1 4.3 2.4

3 5.3 2.8

Obs X Y

2 2.1 1.1

3 5.3 2.8

1 4.3 2.4

Obs X Y

2 2.1 1.1

2 2.1 1.1

1 4.3 2.4

Original Data 
(Z)

𝑍∗𝐵

𝑍∗2

𝑍∗1

ො𝛼∗𝐵

ො𝛼∗2

ො𝛼∗1

⋮ ⋮

Key idea: sample subset of data for training:

▪ training set is sampled from original set with replacement. 

▪ Calculate the statistic of interest. Example: Train the model 

and compute error. 

▪ Repeat the above two steps a large number of times.

Bootstrap samples are highly correlated, which 

increases the variance of the error estimate.

However, re/sub-sampling methods like bootstrap 

allow to learn about the variability of the fitted models, 

as the training set changes. 
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