
Krikamol Muandet
Jilles Vreeken

Model Selection
ISLR 6, ESL 3

Lecture 7



Introduction

We can expand on the basic linear model in several ways
𝑌 = 𝛽! + 𝛽"𝑋" + 𝛽#𝑋# +⋯+ 𝛽$𝑋$ + 𝜖

We can make it more flexible
§ add in nonlinear basis functions (Chapter 7)
§ leave the linear paradigm altogether (Chapter 8)

We can make it less flexible
§ subset selection: only use a subset of the variables in the model
§ shrinkage: penalize models with large or with many non-zero coefficients
§ dimensionality reduction: projecting the data into a low-dimensional subspace
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Why Simpler Models?

Gauss-Markov Theorem
§ the full linear model is the unbiased linear model with the smallest variance

Recall that we have the bias-variance tradeoff as
𝐸 𝑦! − +𝑓 𝑥!

#
= 𝑉𝑎𝑟 +𝑓 𝑥! + 𝐵𝑖𝑎𝑠 +𝑓 𝑥!

#
+ 𝑉𝑎𝑟 𝜖

§ we can often strongly reduce variance at a negligible increase in bias by constraining the coefficients 

Furthermore
§ if 𝑝 > 𝑛 there is no longer a unique least-squares estimate
§ selecting a small subset of the coefficients makes the model more interpretable

(ISL 5.1)VII 3



Best Subset Selection

Find the best model for every possible subset of predictors
§ there are 2! such models
§ assess the test error of each of these models, and then choose the best
§ this scales to 𝑝 ≈ 30

There exist various methods for assessing test error
§ we know cross-validation, which is based on resampling
§ there also exist formulas that estimate test error in terms of 

training error plus a corrective term: 𝐴𝐼𝐶, 𝐵𝐼𝐶, 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2
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Example Best Subset Selection
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Best	subset	selection	on	the	Credit	data
Training	error	measured	via	RSS

Best	subset	selection	on	the	Credit	data
Training	error	measured	via	R2



Stepwise Selection

Greedy approach
1. start with a null model ℳ" that consists of only the intercept
2. iteratively add that predictor that improves the model most* yielding model ℳ#

3. choose the best model among ℳ",ℳ$, … ,ℳ! using some method for assessing test error

§ only ⁄𝑝 𝑝 + 1 2 models need to be calculated 
§ in step 2 we can assess training error as we compare models of the same number of variables
§ in step 3 we have to assess test error as we compare models with different numbers of variables. 

§ backward stepwise selection works similarly: start with full linear model, incrementally eliminate variables
§ in each step the variable is chosen whose elimination deteriorates the model least
§ hybrid approaches allow for switching between forward and backward steps

* in terms of smallest 𝑅𝑆𝑆 or largest 𝑅! (ISSL 5.2)VII 6



Choosing the Optimal Model

1. Validation set
§ Example three fourths for training, one fourth for testing
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Choosing the Optimal Model

2. Cross-validation
§ here, 10-folds
§ the curve is very flat for more than three predictors
§ we likely only pick up noise 𝑝 > 3
§ it is not useful to choose the ‘best’ model

One-standard-error rule:
Choose	the	simplest	model	
within	one	standard	error	

of	the	best	model
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Choosing the Optimal Model

2. Cross-validation
§ here, 10-folds
§ the curve is very flat for more than three predictors
§ we likely only pick up noise 𝑝 > 3
§ it is not useful to choose the ‘best’ model

One-standard-error rule:
Choose	the	simplest	model	
within	one	standard	error	

of	the	best	model
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Application	of	the	one-standard-error-rule	
on	another	dataset	(ESL	p	62)



Choosing the Optimal Model

3. Adjusted 𝑅4

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅# = 1 −
⁄𝑅𝑆𝑆 𝑛 − 𝑑 − 1
⁄𝑇𝑆𝑆 𝑛 − 1

§ vanilla 𝑅' monotonically increases with the number of variables
§ the adjustment counteracts this
§ maximizing adjusted 𝑅' is the same as minimizing 𝑅𝑆𝑆/(𝑛 − 𝑑 − 1)
§ rationale: after all informative variables are in the model, including 

additional noise variables will decrease 𝑅𝑆𝑆 but not 𝑅𝑆𝑆/(𝑛 − 𝑑 − 1)
§ adjusted 𝑅' does not have a sound statistical foundation
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𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅! on	the	Credit	data	set
The	best	model	involves	the	variables

income,	limit,	rating,	cards,	age,	student,	gender



Choosing the Optimal Model

4. the 𝐶D statistic (for least-square models)

𝐶! =
1
𝑛
(𝑅𝑆𝑆 + 2𝑑 =𝜎')

§ the penalty increases with the number 𝑑 of predictors and 
the variance 𝜎' of the irreducible error

§ this accounts for the possibility of overtraining, which 
increases with the complexity of the model

Intuition
§ 𝐶! quantifies the in-sample error 
§ the test error when resampling the training data set
§ if =𝜎' is an unbiased estimate of 𝜎' then 𝐶! is an 

unbiased estimate of the in-sample error

(ESL 7.4)VII 11

𝐶" statistic	on	the	Credit	data	set
The	best	model	involves	the	variables

income,	limit,	rating,	cards,	age,	student



Choosing the Optimal Model

5. Akaike’s Information Criterion (AIC)

𝐴𝐼𝐶 = −
1
𝑛
log ℓ +

𝑘
𝑛

§ for least-square models with Gaussian errors, the maximum 
likelihood and least-square approaches are equivalent

§ that is, we can write the log-likelihood term in terms of 𝑅𝑆𝑆

(usually we don’t bother dividing by 𝑛 and just consider 𝐴𝐼𝐶 = log ℓ + 𝑘)VII 12

𝐴𝐼𝐶 statistic	on	the	Credit	data	set
The	best	model	involves	the	variables

income,	limit,	rating,	cards,	age,	student
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Choosing the Optimal Model

5. Akaike’s Information Criterion (AIC)

𝐴𝐼𝐶 = $
()*#

(𝑅𝑆𝑆 + 2𝑑 =𝜎')

§ for least-square models with Gaussian errors, maximum 
likelihood and least-square approaches are equivalent

§ the log-likelihood is now re-written in terms of 𝑅𝑆𝑆
§ there is an additive constant in 𝐴𝐼𝐶 that we can omit 

because it does not influence the minimization
§ 𝐴𝐼𝐶 is proportional to 𝐶! and thus yields the same curve
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𝐴𝐼𝐶 statistic	on	the	Credit	data	set
The	best	model	involves	the	variables

income,	limit,	rating,	cards,	age,	student
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Choosing the Optimal Model

Why is least-square with Gaussian error equivalent to max likelihood?
§ least-squares with additive Gaussian error

𝑌 = 𝑓+ , + 𝜖, 𝜖 ~ 𝑁(0, 𝜎')

§ maximum likelihood
Pr 𝑌 𝑋, 𝜃 ~ 𝑁 𝑓1 𝑋 , 𝜎#

𝑁 𝑓1 𝑋 , 𝜎# =
1

𝜎 2𝜋
exp −

𝑌 − 𝑓1 𝑋
#

2𝜎#

§ log-likelihood

ℓ 𝜃 = −
𝑛
2 log 2𝜋 − 𝑛 log 𝜎 −

1
2𝜎#U

23"

4

𝑦2 − 𝑓1 𝑥2
#
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proportional to RSS



Choosing the Optimal Model

5. Bayesian Information Criterion

𝐵𝐼𝐶 =
1
𝑛 log ℓ +

𝑘
2𝑛 log 𝑛

§ is derived from a Bayesian background and places a heavier 
penalty on complex models for which log 𝑛 > 2 , i.e. 𝑛 > 7

(just like for AIC, we usually don’t bother to divide by 𝑛, and rather define 𝐵𝐼𝐶 = log ℓ + "
! log 𝑛, ESL 7.7)VII 15

𝐵𝐼𝐶 statistic	on	the	Credit	data	set
The	best	model	involves	the	variables

income,	limit,	cards,	student



Choosing the Optimal Model

6. Bayesian Information Criterion

𝐵𝐼𝐶 =
1
𝑛 𝑅𝑆𝑆 + log 𝑛 𝑑 Y𝜎#

§ is derived from a Bayesian background and places a heavier 
penalty on complex models for which log 𝑛 > 2 , i.e. 𝑛 > 7

§ just like for AIC, we can rewrite the log-likelihood in terms of RSS

(ESL 7.7)VII 16

𝐵𝐼𝐶 statistic	on	the	Credit	data	set
The	best	model	involves	the	variables

income,	limit,	cards,	student



shrinking coefficients rather than setting them to zero
Shrinkage Methods
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Ridge Regression

Ridge regression
minimize 𝑅𝑆𝑆 + 𝜆∑63"

$ 𝛽6# = ∑23"4 𝑦2 − 𝛽! − ∑63"
$ 𝛽6𝑥26

#
+ 𝜆∑63"

$ 𝛽6#

§ the tuning parameter 𝜆 adjusts the relative weight of fit and penalty
§ penalizes models that are complex in terms of having large coefficients
§ we do not penalize the intercept, so if we center the inputs 𝑥26 → 𝑥26 − 𝑥̅6, 𝑖 = 1, … , 𝑁, the intercept is simply

+𝛽!7 = c𝑦 =U
23"

8
𝑦2
𝑁

§ the coefficients are then computed as
minimize 𝒚 − 𝑿𝛽 9 𝒚 − 𝑿𝛽 + 𝜆𝛽9𝛽
+𝛽7 = 𝑿9𝑿 + 𝝀𝐼 :𝟏𝐗9𝒚

§ 𝜆 = 0 yields the full linear model, and when 
𝜆 → ∞ we approach the intercept-only model

§ selection of 𝝀 is critical, done by assessing test error, e.g. with CV
(ISLR 6.2.1)VII 18

always nonsingular

original motivation
for ridge regression



Ridge Regression

Application to the Credit data
§ largest coefficients for income,	limit,	rating, and student
§ as l grows, all coefficients are driven to zero
§ intermittently, individual coefficients can increase

(ISLR 6.2.1)VII 19



Ridge Regression

Application to the Credit data
§ largest coefficients for income,	limit,	rating, and student
§ as l grows, all coefficients are driven to zero
§ intermittently, individual coefficients can increase

Standard least-square coefficients are scale-equivariant
§ scaling the inputs with a factor of 𝑐 leads to 

scaling the coefficients by 1/𝑐

Ridge regression coefficients are not scale-equivariant
§ always standardize inputs to 𝜎 = 1 before doing ridge regression

(ISLR 6.2.1)VII 20

Model	complexity	is	quantified	in	
terms	of	the	ratio	of	the	L2-norms	of	
the	shrunken	and	full	linear	models

Sample	estimate	of
the	standard	deviation
of	the jth predictor

h𝑥26 =
𝑥26

1
𝑛∑23"

4 𝑥26 − 𝑥̅6
#



Calculating the Ridge Estimates
§ if inputs are orthonormal the ridge estimates are scaled versions of least-square estimates, +𝛽7 = <=

">?

§ a very plausible quantity for the dimensionality of a model is its effective degrees of freedom (dof )
df 𝜆 = tr 𝐗 𝐗9𝐗 + 𝜆𝐈 :𝟏𝐗9

df 𝜆 = 𝑝 if 𝜆 = 0
df 𝜆 → 0 for 𝜆 → ∞

§ the trace tr(𝐀) of matrix 𝐀 is the sum over its diagonal entries

If we have a singular value decomposition of 𝐗, i.e. 𝐗 = 𝐔𝐃𝐕
§ 𝐔 is a 𝑛×𝑝 orthogonal matrix, 𝐃 is a 𝑝×𝑝 diagonal matrix, and 𝐕 is a 𝑝×𝑝 orthogonal matrix
§ the diagonal entries 𝑑" ≥ 𝑑# ≥ ⋯ ≥ 𝑑$ ≥ 0 of 𝐃 are the singular values
§ the least squares fitted vector is 𝐗 +𝛽@A = 𝐗 𝐗9𝐗 :"𝐗9𝐲 = 𝐔𝐔9𝐲

§ the ridge regression fit is 𝐗 +𝛽BCDEF = 𝐗 𝐗9𝐗 + 𝜆𝐈 :"𝐗9𝐲 = 𝐔𝐃 𝐃# + 𝜆I :"𝐃𝐔9𝐲 = ∑63"
$ 𝐮6

G#
$

G#
$>?𝐮6

9𝐲

§ the dof then takes the form df 𝜆 = ∑63"
$ G#

$

G#
$>?

(ESL 3.4.1)VII 21



Ridge Regression

Why does ridge regression improve the full linear model?
§ it exploits the bias-variance tradeoff (!)
§ especially effective when 𝑝 ≈ 𝑛

Example Simulated data
§ 𝑝 = 45, 𝑛 = 50
§ all inputs related to the response
§ if 𝑝 > 𝑛 the least-square estimates are not unique, but 

ridge regression does provide a unique solution
§ ridge-regression is also faster than subset selection

(ISLR 6.2.1)VII 22
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The Lasso

Ridge regression results in dense models
§ it does not truly prune features unless 𝜆 = ∞
§ many non-zero coefficients limits interpretability of the model

The Lasso
§ short for the Least Absolute Shrinkage and Selection Operator

minimize 𝑅𝑆𝑆 + 𝜆∑63"
$ |𝛽6 | = ∑23"4 𝑦2 − 𝛽! − ∑63"

$ 𝛽6𝑥26
#
+ 𝜆∑63"

$ |𝛽6 |

§ penalizes using the L1-norm instead of the L2-norm (ridge)
§ yields naturally sparse models, but sensitive to collinearity
§ more compute-intensive as it requires solving a quadratic problem 
§ variants exist that use only a sequence of linear regressions (ESL 3.8)

(ISLR 6.2.2)VII 23

Ridge Regression

Lasso



Example Ridge and Lasso

(ISLR 6.2.2)VII 24

Ridge	Regression

Lasso



Intuition Ridge and Lasso

§ Ridge Regression

minimize ∑23"4 𝑦2 − 𝛽! − ∑63"
$ 𝛽6𝑥26

#
such that ∑63"

$ 𝛽6# ≤ 𝑠

§ objective defines a circle in coefficient space
§ this generalizes to more dimensions

§ Lasso

minimize U
23"

4

𝑦2 − 𝛽! −U
63"

$

𝛽6𝑥26

#

such that U
63"

$

|𝛽6 | ≤ 𝑠

§ objective defines a diamond in coefficient space
§ this generalizes to more dimensions

(ISLR 6.2.2)VII 25

𝛽$ + 𝛽! ≤ 𝑠

𝛽$! +𝛽!! ≤ 𝑠



Comparing Ridge and Lasso

Example a simple case
§ 𝑛 = 𝑝, 𝐗 a unit matrix, and we force the intercept to be zero
§ residual sum of squares ∑63"

$ 𝑦6 − 𝛽6
# is minimized by +𝛽6 = 𝑦6

§ ridge regression minimizes

U
63"

$

𝑦6 − 𝛽6
#
+ 𝜆U

63"

$

𝛽6#

which yields +𝛽67 = 𝑦6/(1 + 𝜆)

§ Lasso minimizes

/
%&$

"

𝑦% −𝛽%
! +𝜆/

%&$

"

|𝛽%|

which yields 

4𝛽%' =
𝑦% − 6𝜆 2 if 𝑦% > 6𝜆 2
𝑦% + 6𝜆 2 if 𝑦% < − 6𝜆 2

0 if 𝑦% ≤ λ
(ISLR 6.2.2)VII 26



Comparing Ridge and Lasso

Example Ridge and Lasso
§ evaluated in terms of accuracy on simulated data 
§ 𝑝 = 45
§ 𝑛 = 50
§ only two inputs related to response

Lasso performs clearly better in this case

(ISLR 6.2.2)VII 27
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Comparing Ridge and Lasso

Example Ridge and Lasso
§ evaluated in terms of accuracy on simulated data 
§ 𝑝 = 45
§ 𝑛 = 50
§ all inputs related to the response

(ISLR 6.2.2)VII 28

Ridge	Regression
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Comparing Ridge and Lasso

Example Ridge and Lasso
§ evaluated in terms of accuracy on simulated data 
§ 𝑝 = 45
§ 𝑛 = 50
§ all inputs related to the response

Ridge regression is a bit better here
§ all true coefficients are nonzero
§ Lasso drives some of them to zero

(ISLR 6.2.2)VII 29
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Selecting the Tuning Parameter

Can be done with cross validation
§ select a grid of 𝜆 values
§ compute cross-validation error for each of the values
§ select the value for which the cross-validation error is smallest, 
§ or, select the largest 𝜆 that yields a cross-validation error within 

one standard deviation of the smallest cross-validation error
§ refit the model using all data using that selected value of 𝜆

(ISLR 6.2.2)VII 30

This	is	admissible	as	long	as	you
do	not	assess	test	error	of	the	resulting
model	on	any	of	the	training	data!	 Model	selection	on	the	Credit	dataset

using	ridge	regression.	

Not	much	shrinkage	is	needed
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Selecting the Tuning Parameter

Can be done with cross validation
§ select a grid of 𝜆 values
§ compute cross-validation error for each of the values
§ select the value for which the cross-validation error is smallest, 
§ or, select the largest 𝜆 that yields a cross-validation error within 

one standard deviation of the smallest cross-validation error
§ refit the model using all data using that selected value of 𝜆

(ISLR 6.2.2)VII 31

This	is	admissible	as	long	as	you
do	not	assess	test	error	of	the	resulting
model	on	any	of	the	training	data!	 Coefficients	as	functions	of	𝜆

on	the	Credit	dataset
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Selecting the Tuning Parameter

(ISLR 6.2.2)VII 32

Lasso	fit	on	sparse	simulated	data	set
(only	2	out	45	predictors	related	to	the	response)
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Here,	a	lot	shrinkage	of	is	needed	to	
weed	out	unrelated	predictors The	full	model	identifies	just	1	predictor



High-Dimensional Data
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High-Dimensional Data

Traditionally, data problems tended to be low-dimensional 
§ far fewer predictors (a handful) than observations (10s up to 1000s)

With new technologies this changed dramatically
§ half a million gene variants (SNPs) for regressing blood pressure measurements on e.g. 200 people 
§ all the search terms entered by a user in a search engine for marketing purposes

In a high-dimensional problem, the number of features exceeds the number of observations
§ practically, what we discuss here also applies to cases where 𝑝 is slightly smaller than 𝑛

(ISL 6.4.1)VII 34



What Goes Wrong in High-Dimensions

In high dimensions, methods like least squares suggest a perfect fit, but are too flexible and overfit

(ISL 6.4.2)VII 35

20, 1n p= = 2, 1n p= =



What Goes Wrong in High-Dimensions

Simulated example
§ least-squares regression
§ 20 observations
§ 1 to 20 features, all completely unrelated to the response
§ there is nothing to learn, but nevertheless the correlation 

rapidly becomes ideal the more features we include

(ISL 6.4.2)VII 36



What Goes Wrong in High-Dimensions

Simulated example
§ least-squares regression
§ 20 observations
§ 1 to 20 features, all completely unrelated to the response
§ there is nothing to learn, but nevertheless the correlation 

rapidly becomes ideal the more features we include
§ the training error reduces to zero
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What Goes Wrong in High-Dimensions

Simulated example
§ least-squares regression
§ 20 observations
§ 1 to 20 features, all completely unrelated to the response
§ there is nothing to learn, but nevertheless the correlation 

rapidly becomes ideal the more features we include
§ the training error reduces to zero
§ the test error points very simple models out as the best
§ simple model selection techniques like 𝐶𝑝, AIC, BIC do not 

work well in high-dimensional settings
§ adjusted 𝑅2 often approaches 1 and cannot be used either

(ISL 6.4.2)VII 38



Regression in High Dimensions

Methods for fitting less flexible models are 
surprisingly suited for high-dimensional data

Simulated example
§ Lasso regression
§ 100 observations for 𝑝 = 20, 50, 2000
§ only 20 features are truly associated with the outcome

(ISLR 6.4.3)VII 39



Example Regression in High Dimensions

(ISLR 6.4.3)VII 40
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Regression in High Dimensions

Methods for fitting less flexible models are 
surprisingly suited for high-dimensional data

Simulated example
§ Lasso regression
§ 100 observations for 𝑝 = 20, 50, 2000
§ only 20 features are truly associated with the outcome

Observations
1. regularization can harness problems with high dimensions
2. selecting the appropriate model is crucial
3. test error increases with the number of predictors unrelated to the response

(curse of dimensionality)

(ISLR 6.4.3)VII 41
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Interpreting Results in High Dimensions

Multi-co-linearity of predictors is extreme in high dimensions
§ any variable is a linear combination of other variables
§ we can never know which variables are truly related to the response; we will never find the best coefficients
§ all we can do, is find large coefficients for variables that are strongly correlated with those variables that are 

truly predictive of the response

Example Predicting blood pressure based on 500,000 SNPs
§ forward stepwise selection says 17 SNPs provide a predictive model

This does not mean that those SNPs are better than any others at predicting blood pressure
§ there will be many sets of 17 SNPs that do the trick
§ models on different data sets would be very much different
§ so, the model is predictive, but not interpretable

(ISLR 6.4.4)VII 42



Interpreting Results in High Dimensions

Reporting errors in high-dimensional data fitting
§ never use estimates of train error
§ never use AIC, BIC or adjusted 𝑅'

§ never use p-value statistics based on training data
§ instead, use error estimates on independent test sets

g via RSE or 𝑅'

§ or use cross validation

(ISL 6.4.4)VII 43


