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Moving Beyond Linearity
There are several ways of extending linear models
1. polynomial regression, with polynomial basis functions

 e.g., (simple) cubic regression uses basis functions 𝑋𝑋, 𝑋𝑋2, 𝑋𝑋3

2. step functions decompose the value range into 𝐾𝐾 distinct regions
 the effect is to fit a piecewise constant function (𝑘𝑘-nearest neighbor models)

3. regression splines combine the two approaches
 they divide the variable range into 𝐾𝐾 regions,
 they fit polynomials in each region, and
 they force smoothness at region boundaries (knots)

4. smoothing splines are splines with many knots
 they fit the RSS subject to a smoothness penalty

5. local regression is similar to splines
 but allows the regions overlap in a smooth fashion

Generalized additive models allow for dealing with multiple predictors
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Polynomial Regression

Standard linear model
𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖

Polynomial regression
𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 + ⋯+ 𝛽𝛽𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑 + 𝜖𝜖

Model is still linear in the coefficients 𝛽𝛽𝑖𝑖!
 compute confidence bounds as before

using pointwise variance from least squares

(ISLR 7.1)VIII 3

Model (degree 4)
95% confidence interval

high earners

low earners

example regression on wage data



Polynomial Regression

Standard linear model
𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖

Polynomial logistic regression

Pr 𝑦𝑦𝑖𝑖 > 250 𝑥𝑥𝑖𝑖 =
exp 𝛽𝛽0+𝛽𝛽1𝑥𝑥𝑖𝑖+𝛽𝛽2𝑥𝑥𝑖𝑖

2+⋯+𝛽𝛽𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑

1+exp 𝛽𝛽0+𝛽𝛽1𝑥𝑥𝑖𝑖+𝛽𝛽2𝑥𝑥𝑖𝑖
2+⋯+𝛽𝛽𝑑𝑑𝑥𝑥𝑖𝑖

𝑑𝑑

Model is still linear in the coefficients 𝛽𝛽𝑖𝑖!
 compute confidence bounds as before

using pointwise variance from least squares
 bands are wide because there are only 

few (79 out of 3000) high earners
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Choosing the Degree

Unusual to use 𝑑𝑑 greater than 3 or 4

Polynomial of degree 𝑛𝑛 can perfectly fit 𝑛𝑛 observations with different inputs
 𝑛𝑛 + 1 if we also include the bias/intercept 
 risk of overfitting

In practice you can just use cross validation

Issue: Notorious tail behavior – bad for extrapolation
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Step Functions

We convert a continuous to an ordered categorical variable (ordinal)
 create cutpoints 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐾𝐾 in the range of 𝑋𝑋
 construct 𝐾𝐾 + 1 new variables

𝐶𝐶0 𝑋𝑋 = 𝐼𝐼 𝑋𝑋 < 𝑐𝑐1 ,
𝐶𝐶1 𝑋𝑋 = 𝐼𝐼 𝑐𝑐1 ≤ 𝑋𝑋 < 𝑐𝑐2 ,

…
𝐶𝐶𝐾𝐾−1 𝑋𝑋 = 𝐼𝐼 𝑐𝑐𝐾𝐾−1 ≤ 𝑋𝑋 < 𝑐𝑐𝐾𝐾 ,
𝐶𝐶𝐾𝐾 𝑋𝑋 = 𝐼𝐼(𝑐𝑐𝐾𝐾 ≤ 𝑋𝑋)

 𝐼𝐼(⋅) is the indicator function: 1 if its argument is true and zero otherwise

Regression 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶1 𝑥𝑥𝑖𝑖 + 𝛽𝛽2𝐶𝐶2 𝑥𝑥𝑖𝑖 + ⋯+ 𝛽𝛽𝐾𝐾𝐶𝐶𝐾𝐾 𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖
 𝛽𝛽0 is the average of 𝑌𝑌 for all 𝑋𝑋 < 𝑐𝑐1
 𝛽𝛽𝑗𝑗 is the average increase in 𝑌𝑌 over 𝛽𝛽0 for 𝑐𝑐𝑗𝑗 < 𝑋𝑋 < 𝑐𝑐𝑗𝑗+1
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Step Functions

We convert a continuous to an ordered categorical variable (ordinal)
 create cutpoints 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐾𝐾 in the range of 𝑋𝑋
 construct 𝐾𝐾 + 1 new variables

𝐶𝐶0 𝑋𝑋 = 𝐼𝐼 𝑋𝑋 < 𝑐𝑐1 ,
𝐶𝐶1 𝑋𝑋 = 𝐼𝐼 𝑐𝑐1 ≤ 𝑋𝑋 < 𝑐𝑐2 ,

…
𝐶𝐶𝐾𝐾−1 𝑋𝑋 = 𝐼𝐼 𝑐𝑐𝐾𝐾−1 ≤ 𝑋𝑋 < 𝑐𝑐𝐾𝐾 ,
𝐶𝐶𝐾𝐾 𝑋𝑋 = 𝐼𝐼(𝑐𝑐𝐾𝐾 ≤ 𝑋𝑋)

 𝐼𝐼(⋅) is the indicator function: 1 if its argument is true and zero otherwise

Classification Pr 𝑦𝑦𝑖𝑖 > 250 𝑥𝑥𝑖𝑖 = exp 𝛽𝛽0+𝛽𝛽1𝐶𝐶1 𝑥𝑥𝑖𝑖 +⋯+𝛽𝛽𝐾𝐾𝐶𝐶𝐾𝐾 𝑥𝑥𝑖𝑖
1+exp 𝛽𝛽0+𝛽𝛽1𝐶𝐶1 𝑥𝑥𝑖𝑖 +⋯+𝛽𝛽𝐾𝐾𝐶𝐶𝐾𝐾 𝑥𝑥𝑖𝑖

Cutpoints need to be placed wisely, lest the model misses the action!
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wage classification
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Regression Splines

Instead of fitting one high-degree polynomial, 
we fit a low-degree polynomial per region of 𝑋𝑋

(ISLR 7.4)VIII 8
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Regression Splines

Instead of fitting one high-degree polynomial, 
we fit a low-degree polynomial per region of 𝑋𝑋

 make sure that the model is smooth at region boundaries
 that is, continuous and 𝑑𝑑– 1 times continuously 

differentiable, where 𝑑𝑑 is the degree of the polynomial
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Regression Splines

Instead of fitting one high-degree polynomial, 
we fit a low-degree polynomial per region of 𝑋𝑋

 make sure that the model is smooth at region boundaries
 that is, continuous and 𝑑𝑑– 1 times continuously 

differentiable, where 𝑑𝑑 is the degree of the polynomial
 𝑑𝑑 = 3 is a popular choice, it appears to be the right 

compromise between nonlinearity and smoothness
 the more regions, the more flexibility in the model

 with 𝐾𝐾 cutpoints (knots) fit 𝐾𝐾 + 1 polynomials
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Regression Splines

Instead of fitting one high-degree polynomial, 
we fit a low-degree polynomial per region of 𝑋𝑋

 make sure that the model is smooth at region boundaries
 that is, continuous and 𝑑𝑑– 1 times continuously 

differentiable, where 𝑑𝑑 is the degree of the polynomial
 𝑑𝑑 = 3 is a popular choice, it appears to be the right 

compromise between nonlinearity and smoothness
 the more regions, the more flexibility in the model

 with 𝐾𝐾 cutpoints (knots) fit 𝐾𝐾 + 1 polynomials
 regression splines of degree 𝑑𝑑 with 𝐾𝐾 knots

form a vector space with dimension 𝑑𝑑 + 𝐾𝐾 + 1
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Spline Bases of the Cubic Splines

The vector space of cubic splines (𝑑𝑑 = 3) with
𝐾𝐾 knots has dimension 𝐾𝐾 + 𝑑𝑑 + 1 = 𝐾𝐾 + 4

The truncated cubic function is defined as 
ℎ 𝑥𝑥, 𝜁𝜁 = 𝑥𝑥 − 𝜁𝜁 +

3 = � 𝑥𝑥 − 𝜁𝜁 3 if 𝑥𝑥 > 𝜁𝜁
0 otherwise

The functions 1,𝑋𝑋, 𝑋𝑋2 ,𝑋𝑋3,ℎ 𝑋𝑋, 𝜁𝜁1 ,ℎ 𝑋𝑋, 𝜁𝜁2 ,
ℎ(𝑋𝑋, 𝜁𝜁𝐾𝐾) form the canonical basis of the 
vectors space of cubic splines with 𝐾𝐾 knots
 𝜁𝜁1, 𝜁𝜁2, … , 𝜁𝜁𝐾𝐾 are the positions of the knots
 every cubic spline with 𝐾𝐾 knots is a unique 

linear combination of the basis functions
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basis functions of cubic splines with 
3 knots at  0.1, 0.3, and 0.6



Natural Cubic Splines

Cubic splines have high variance at the boundaries
 because information comes from only one side

Idea: make spline simpler at the boundaries (linear splines) 

The resulting natural cubic splines have a different basis
𝑁𝑁1 𝑋𝑋 = 1, 𝑁𝑁2 𝑋𝑋 = 𝑋𝑋, 𝑁𝑁𝑘𝑘+2(𝑋𝑋) = 𝑑𝑑𝑘𝑘 𝑋𝑋 − 𝑑𝑑 𝐾𝐾−1 𝑋𝑋 , 
where 𝑑𝑑𝑘𝑘 𝑋𝑋 = 𝑋𝑋−𝜁𝜁𝑘𝑘 +

3− 𝑋𝑋−𝜁𝜁𝐾𝐾 +
3

𝜁𝜁𝐾𝐾−𝜁𝜁𝑘𝑘
for 𝑘𝑘 = 1, … ,𝐾𝐾 − 2

The vector space of natural cubic splines with K knots has dimension K
 lost two degrees of freedom at each boundary region – square and cubic coefficients are zero
 natural splines have less variance at the boundaries

(ISLR 7.4.3)VIII 13

splines with 3 knots



On the Number and Location of Knots

Location of the knots
 equidistant in values range of input 

 common approach
 according to quantiles in the data set

 more information on response in input regions of high data density 
 thus the knots can be placed more densely,

affording higher model flexibility in these regions

Number of knots
 directly related to degrees of freedom (dof) of the model
 software often lets you choose the dof

(ISLR 7.4.4)VIII 14

wage regression with
natural cubic splines with 3 dof
(3 knots at the three quartiles)



On the Number and Location of Knots

Location of the knots
 equidistant in values range of input 

 common approach
 according to quantiles in the data set

 more information on response in input regions of high data density 
 thus the knots can be placed more densely,

affording higher model flexibility in these regions

Number of knots
 directly related to degrees of freedom (dof) of the model
 software often lets you choose the dof
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wage classification with
natural cubic splines with 3 dof
(3 knots at the three quartiles)



On the Number and Location of Knots

Model selection for splines
 the degree and kind of splines, and the number of knots
 number of knots can be chosen by cross validation
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regression to the wage data

models with small degrees of 
freedom are low-degree 
polynomials without knots



On the Number and Location of Knots

Splines tend to be superior to polynomials
 splines are smoother than polynomials because of their low degree
 polynomials can be very wiggly, especially at the value space boundaries
 knots can be placed flexibly to account for non-uniform data density
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polynomial and spline 
both with 15 degrees 
of freedom

(𝒅𝒅 = 𝟏𝟏𝟏𝟏)



Smoothing Splines

Reduces RSS while keeping the curve smooth, i.e. non-wiggly
 nonparametric approach 
 wigglyness is quantified in terms of second derivative 𝑔𝑔′′(x)
 introduce a penalty on the size of the second derivative
 we minimize the following (analogous to ridge regression):

Important theorem: it can be shown that the function that 
minimizes the above equation (*) is a natural cubic spline 
with knots at the inputs of all data points
 this is not the same spline we get when we use the natural cubic spline basis
 rather, it is a shrunken version of that spline with restrictions on its second derivative

(ISLR 7.5.1)VIII 18

∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − 𝑔𝑔 𝑥𝑥𝑖𝑖
2 + 𝜆𝜆∫ 𝑔𝑔′′ 𝑡𝑡 2𝑑𝑑𝑡𝑡 (*)



How to choose 𝜆𝜆?

Increasing 𝜆𝜆 shrinks the spline, reducing its effective degrees of freedom
 same notion of effective degrees of freedom as in ridge regression
 let �𝒈𝒈𝜆𝜆 = 𝑺𝑺𝜆𝜆𝒚𝒚
 here  �𝒈𝒈𝜆𝜆 is the vector containing the fitted outputs at the 

training inputs 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 for a particular choice of 𝜆𝜆
 this vector is a linear function of 𝒚𝒚 denoted 𝑺𝑺𝜆𝜆𝒚𝒚
 in Chapter 6 we defined the effective degrees of freedom as 𝐭𝐭𝐭𝐭 𝑺𝑺𝜆𝜆

𝜆𝜆 can be chosen by cross validation
 we can use the formula for generalized LOOCV from Chapter 5

𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 𝜆𝜆 = �
𝑖𝑖=1

𝑛𝑛

𝑦𝑦𝑖𝑖 − �𝑔𝑔𝜆𝜆
−𝑖𝑖 𝑥𝑥𝑖𝑖

2
= �

𝑖𝑖=1

𝑛𝑛
𝑦𝑦𝑖𝑖 − �𝑔𝑔𝜆𝜆 𝑥𝑥𝑖𝑖
1 − 𝑺𝑺𝜆𝜆 𝑖𝑖𝑖𝑖

2
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Local Regression

Extension of k-nearest neighbors
 fits not constant, but polynomial models based on the nearest neighbors of a test point
 weighs the contribution of neighbors by their distance to test point

(ISLR 7.6)VIII 20

Local regression on simulated data
true curve f(x)
fitted curve
fitted linear regression at test point x0
weights of the neighbors of the test point x0
Neighbors whose weights are nonzero



Local Regression

Extension of k-nearest neighbors
 fits not constant, but polynomial models based on the nearest neighbors of a test point
 weighs the contribution of neighbors by their distance to test point
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Local regression on simulated data
true curve f(x)
fitted curve
fitted linear regression at test point x0
weights of the neighbors of the test point x0
Neighbors whose weights are nonzero



Local Regression

Extension of k-nearest neighbors
 fits not constant, but polynomial models based on the nearest neighbors of a test point
 weighs the contribution of neighbors by their distance to test point

Weights of neighbors are calculated with a kernel function

 in the simulated example we used the tri-cube kernel 𝐷𝐷 𝑡𝑡 = � 1 − 𝑡𝑡 3 3 if 𝑡𝑡 ≤ 1
0 otherwise

(ISLR 7.6)VIII 22



Local Regression

Extension of k-nearest neighbors
 fits not constant, but polynomial models based on the nearest neighbors of a test point
 weighs the contribution of neighbors by their distance to test point

Weights of neighbors are calculated with a kernel function
 in the simulated example we used the tri-cube kernel

𝐷𝐷 𝑡𝑡 = � 1 − 𝑡𝑡 3 3 if 𝑡𝑡 ≤ 1
0 otherwise

 the width of the kernel is the span, important model parameter, to be chosen by CV
 if the kernel has no compact support all training data is needed for each prediction (high memory)
 local fit is with a linear function
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Local Regression – Kernel

Define the kernel as 𝐾𝐾𝜆𝜆 𝑥𝑥0, 𝑥𝑥 = 𝐷𝐷 𝑥𝑥−𝑥𝑥0
𝑠𝑠𝜆𝜆 𝑥𝑥0

 the span 𝑠𝑠𝜆𝜆 𝑥𝑥0 depends on smoothing parameter λ and on the test point x0

 large 𝜆𝜆 implies high bias and low variance
 constant span 𝑠𝑠𝜆𝜆 𝑥𝑥0 = 𝜆𝜆 leads to metric kernels

 bias is constant over data range
 variance is inversely proportional to the local density

 nearest-neighbor window width 𝑠𝑠𝑘𝑘 𝑥𝑥0 = |𝑥𝑥0 − 𝑥𝑥 𝑘𝑘 | displays the opposite behavior
 𝑥𝑥 𝑘𝑘 is the k-th closest neighbor
 variance is constant over data range
 bias is inversely proportional to local density
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Local (Linear) Regression

Local regression at 𝑋𝑋 = 𝑥𝑥0
1. assign weight 𝐾𝐾𝑖𝑖0 = 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥0) to each training point via the kernel
2. fit a weighted least-squares regression model, i.e. find �̂�𝛽0, �̂�𝛽1 that minimize ∑𝑖𝑖=1𝑛𝑛 𝐾𝐾𝑖𝑖0 𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽1𝑥𝑥𝑖𝑖 2

3. the fitted value at 𝑥𝑥0 is given by 𝑓𝑓 𝑥𝑥0 = �̂�𝛽0 + �̂�𝛽1𝑥𝑥𝑖𝑖

Easily generalizes to multivariate, for higher dimensions (𝑝𝑝 > 3,4) data sparsity can be an issue
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local linear regression on wage with nearest-neighbor kernel
span = fraction of the data used to fit each target



Generalized Additive Models (GAM)

General framework for including nonlinear basis functions into linear multivariate models
 generalize the linear model

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖1 + 𝛽𝛽2𝑥𝑥𝑖𝑖2 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑝𝑝 + 𝜖𝜖𝑖𝑖
to

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝑓𝑓1(𝑥𝑥𝑖𝑖1) + 𝑓𝑓2(𝑥𝑥𝑖𝑖2) + ⋯+ 𝑓𝑓𝑝𝑝(𝑥𝑥𝑖𝑖𝑝𝑝) + 𝜖𝜖𝑖𝑖
All methods we discussed so far can be plugged into this scheme (!)

For example:
wage = 𝛽𝛽0 + 𝑓𝑓1 year + 𝑓𝑓2 age + 𝑓𝑓3 education + 𝜖𝜖

 year, age continuous, fitted with natural splines (4 and 5 dof, respectively)
 education has categories <HS, HS, <Coll, Coll,>Coll fitted with constants per dummy variable
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Generalized Additive Models (GAM)

(ISLR 7.7)VIII 27

natural spline 4 dof natural spline 5 dof constants for dummies



Generalized Additive Models (GAM)
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smoothing spline 4 dof smoothing spline 5 dof constants for dummies



Fitting Additive Models With Linear Smoothers

Simple iterative solution procedure (backfitting)

For many linear smoothers backfitting is the same as 
the Gauss-Seidel algorithm for solving linear systems of equations

(ESL 9.1.1)VIII 29

Cubic smoothing spline fit to the residual
as a function of the j-th input only,
Applicable also to other linear 
smoothing operators

Secure mean zero,
Not necessary, in theory, since the 
smoothing spline for a mean zero 
response has mean zero, good, in 
practice, to counteract slippage 
caused by machine rounding

The nonlinear terms average to zero over the data

Run until convergence

1. Initialize

�̂�𝛽0 =
1
𝑁𝑁�

𝑖𝑖=1

𝑁𝑁

𝑦𝑦𝑖𝑖 , 𝑓𝑓𝑗𝑗 ≡ 0 ∀𝑖𝑖,𝑗𝑗

2. Cycle 𝑗𝑗 = 1, 2, … ,𝑝𝑝, 1, 2, … ,𝑝𝑝, … ,

𝑓𝑓𝑗𝑗 ← 𝑅𝑅𝑗𝑗 𝑦𝑦𝑖𝑖 − �̂�𝛽0 − ∑𝑘𝑘≠𝑗𝑗
𝑝𝑝 𝑓𝑓𝑘𝑘 𝑥𝑥𝑖𝑖𝑘𝑘

𝑖𝑖=1

𝑁𝑁

𝑓𝑓𝑗𝑗 ← 𝑓𝑓𝑗𝑗 −
1
𝑁𝑁
∑𝑖𝑖=1𝑁𝑁 𝑓𝑓𝑗𝑗 𝑥𝑥𝑖𝑖𝑗𝑗



Generalized Additive Models (GAM)

Pros and cons of GAMs

 nonparametric, no need of trying out different model assumptions

 nonparametric, can afford more accurate predictions

 since model is additive, we can assess the influence of 
a variable while holding the other variables fixed

 smoothness of function 𝑓𝑓𝑗𝑗 for variable 𝑋𝑋𝑗𝑗 can 
be summarized via degrees of freedom

 restriction of the model to be additive, this can miss important interactions

 but, we can add predictors like 𝑋𝑋𝑗𝑗 × 𝑋𝑋𝑘𝑘 fitted with e.g. two-dimensional  splines

(ISLR 7.7)VIII 30



Generalized Additive Models (GAM)

GAMs for classification
 use logistic regression

 linear model log 𝑝𝑝 𝑥𝑥
1−𝑝𝑝 𝑋𝑋

= 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝

 generalized additive model log 𝑝𝑝 𝑥𝑥
1−𝑝𝑝 𝑋𝑋

= 𝛽𝛽0 + 𝑓𝑓1(𝑋𝑋1) + 𝑓𝑓2(𝑋𝑋2) + ⋯+ 𝑓𝑓𝑝𝑝(𝑋𝑋𝑝𝑝)

Example on the wage data: 𝑝𝑝 𝑋𝑋 = Pr(wage > 250 ∣ year,age,education)
 the GAM takes the form 

log
𝑝𝑝 𝑋𝑋

1 − 𝑝𝑝 𝑋𝑋
= 𝛽𝛽0 + 𝑓𝑓1 year + 𝑓𝑓2 age + 𝑓𝑓3 education
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Generalized Additive Models (GAM)

Smoothing splines fitted using backfitting

(ISLR 7.7)VIII 32

Due to no individuals without high school 
education earning more than $250K per year

linear function in year smoothing spline 5 dof constants for dummies



Generalized Additive Models (GAM)

Refit excluding people without high school education
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linear function in year smoothing spline 5 dof constants for dummies
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