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Polynomial Regression

Standard linear model

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖

Polynomial regression

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 +⋯+ 𝛽𝑑𝑥𝑖

𝑑 + 𝜖

Model is still linear in the coefficients 𝛽𝑖!

▪ compute confidence bounds as before

using pointwise variance from least squares
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Step Functions

We convert a continuous to an ordered categorical variable (ordinal)

▪ create cutpoints 𝑐1, 𝑐2,… , 𝑐𝐾 in the range of 𝑋

▪ construct 𝐾 + 1 new variables

𝐶0 𝑋 = 𝐼 𝑋 < 𝑐1 ,

𝐶1 𝑋 = 𝐼 𝑐1 ≤ 𝑋 < 𝑐2 ,

…

𝐶𝐾−1 𝑋 = 𝐼 𝑐𝐾−1 ≤ 𝑋 < 𝑐𝐾 ,

𝐶𝐾 𝑋 = 𝐼(𝑐𝐾 ≤ 𝑋)

▪ 𝐼(⋅) is the indicator function: 1 if its argument is true and zero otherwise

Regression 𝑦𝑖 = 𝛽0 +𝛽1𝐶1 𝑥𝑖 + 𝛽2𝐶2 𝑥𝑖 +⋯+ 𝛽𝐾𝐶𝐾 𝑥𝑖 + 𝜖𝑖
▪ 𝛽0 is the average of 𝑌 for all 𝑋 < 𝑐1

▪ 𝛽𝑗 is the average increase in 𝑌 over 𝛽0 for 𝑐𝑗 < 𝑋 < 𝑐𝑗+1
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Regression Splines

Instead of fitting one high-degree polynomial, 

we fit a low-degree polynomial per region of 𝑋

▪ make sure that the model is smooth at region boundaries

▪ that is, continuous and 𝑑– 1 times continuously 

differentiable, where 𝑑 is the degree of the polynomial
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single cutpoint at age=50 



Local Regression

Extension of k-nearest neighbors

▪ fits not constant, but polynomial models based on the nearest neighbors of a test point

▪ weighs the contribution of neighbors by their distance to test point
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Local regression on simulated data
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Generalized Additive Models (GAM)

General framework for including nonlinear basis functions into linear multivariate models

▪ generalize the linear model

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2+ ⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖
to

𝑦𝑖 = 𝛽0 + 𝑓1(𝑥𝑖1) + 𝑓2(𝑥𝑖2) +⋯+ 𝑓𝑝(𝑥𝑖𝑝)+ 𝜖𝑖

All methods we discussed so far can be plugged into this scheme (!)
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Generalized Additive Models (GAM)

Pros and cons of GAMs

▪ nonparametric, no need of trying out different model assumptions

▪ nonparametric, can afford more accurate predictions

▪ since model is additive, we can assess the influence of 

a variable while holding the other variables fixed

▪ smoothness of function 𝑓𝑗 for variable 𝑋𝑗 can 

be summarized via degrees of freedom

▪ restriction of the model to be additive, this can miss important interactions

 but, we can add predictors like 𝑋𝑗 × 𝑋𝑘 fitted with e.g. two-dimensional  splines
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Generalized Additive Models (GAM)

GAMs for classification

▪ use logistic regression

▪ linear model log
𝑝 𝑥

1−𝑝 𝑋
= 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑝𝑋𝑝

▪ generalized additive model log
𝑝 𝑥

1−𝑝 𝑋
= 𝛽0 + 𝑓1(𝑋1) + 𝑓2(𝑋2) + ⋯+ 𝑓𝑝(𝑋𝑝)

Example on the wage data: 𝑝 𝑋 = Pr(wage > 250 ∣ year,age,education)
▪ the GAM takes the form 

log
𝑝 𝑋

1 − 𝑝 𝑋
= 𝛽0 + 𝑓1 year + 𝑓2 age + 𝑓3 education
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