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Exercise Sheet #4: Beyond Linear

Problem 1 (For Tutorials on 18.12 and 19.12). Splines.
In the lectures, you have learned that the space of cubic splines with K knots has dimension K + 4. But
how did we arrive at this number?

1. Assume that we have K = 1 knot, and let ζ be this knot. Further, let the spline be written as

f(x) =

{
a3x

3 + a2x
2 + a1x+ a0, x ≤ ζ

b3(x− ζ)3 + b2(x− ζ)2 + b1(x− ζ) + b0, x > ζ.

Let a0, . . . , a3 be given. Show that b0, b1, b2 are fully determined by the constraint imposed by f
being twice differentiable at x = ζ. What does this mean for the degrees of freedom of the model?

2. Write down a similar presentation for a quadratic spline with K = 1 knot at ζ. How many parameters
does this model have under the requirement that the spline be differentiable once?

3. How large is the difference in free parameters between quadratic and cubic splines? Is this difference
bigger than you would intuitively expect? Is it smaller?

4. Explain why cubic splines would be more suitable than quadratic splines for the data in Fig. 1. The
K = 2 knots ζ1, ζ2 are located as shown.

ζ1 ζ2

Figure 1: Three Parabolas side by side.
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Solution.

1. f being twice differentiable at x = ζ means that the zeroth, first and second derivatives of both
cases in the definition of f match at this point. The constraints are therefore

a3ζ
3 + a2ζ

2 + a1ζ + a0 = b0 f

3a3ζ
2 + 2a2ζ + a1 = b1 f ′

6a3ζ + 2a2 = 2b2 f ′′

so that given a0, . . . , a3 the only free parameter is b3. We therefore have only K = 1 additional
degree of freedom in choosing our spline.

2. For the quadratic spline with one knot, we can write

f(x) =

{
a2x

2 + a1x+ a0, x ≤ ζ

b2(x− ζ)2 + b1(x− ζ) + b0, x > ζ.

Then the zeroth and first-order constraints are

a2ζ
2 + a1ζ + a0 = b0

2a2ζ + a1 = b1

so again, the only free parameter given a0, . . . , a2 would be b2. Therefore we have K + 3 = 4 free
parameters a0, a1, a2, b2.

3. The result that cubic splines have K+4 free parameters and quadratic splines have K+3 parameters
is rather unintuitive. After all, for large K we have “almost” the same number of parameters—
relative to how many parameters we have in total. That is, for each of the K + 1 intervals separated
by the K knots we have on average

K + 4

K + 1
= 1 +

3

K + 1
(cubic)

K + 3

K + 1
= 1 +

2

K + 1
(quadratic)

free parameters, which for large K is not very much of a difference.
And yet, in every single interval the function is a cubic polynomial, which we would expect to be
much more expressive than a quadratic polynomial.

4. While the displayed data is piecewise quadratic, a quadratic spline is not suitable for modeling it.
The issue is the following: a quadratic spline can’t have an inflection point in its interior. That is,
once the left-most parabola is oriented, the orientation of the second parabola is fixed as shown in
the Fig. 2 on the left. Therefore, when fitting a quadratic spline to the data, the best we can do (in
terms of orientation, not scale), is to direct the first and third parabolas correctly, and hope the
second isn’t too bad.

In contrast, with cubic splines we do not have this issue, as seen in Fig 2 on the right. Since cubic
splines can have an inflection point on the inside, they can turn around and capture more of the
parabola in this way.

Of course, at the end of the day, when constraints (e.g. natural splines) or regularization (e.g.
smoothing splines) are included, the difference between the two models becomes smaller.
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Figure 2: A representation of why quadratic splines do not do well at capturing three parabolas with
the same direction, while cubic splines have a better ability to capture them. Left: The first parabola
completely determines the orientation of the second parabola. Right: With well-chosen parameters, the
left-most part going in the wrong direction can be made very small, while the correctly-oriented part can
be made to capture the second parabola arbitrarily well.
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Problem 2 (For Tutorials on 18.12 and 19.12). Generalized Additive Models.
In Generalized Additive Models (GAMs), we are interested in predicting our target variable Y ∈ R based
on the variables X1, . . . , Xp as follows:

g(Y ) = α+

p∑
j=1

fj(Xj) ,

where we assume that E(fj(Xj)) = 0 for all j. For the rest of this exercise, we will assume g = id to be
the identity function and that the dimensionality of X is p = 2.

1. In the lecture we have seen the backfitting algorithm. Let the smoothing operators Sj = Sλ for
λ ≥ 0 take the following form

β̂j = argmin
β

∑
i

yi − α−
∑
k:k ̸=j

f̂k(xki)− βxji

2

+ λβ2

f̂j(Xj) = β̂jXj .

Write out the first iteration of the backfitting algorithm. That is, compute the parameters β̂j for

both f̂1 and f̂2 after the first iteration of the algorithm.
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Solution.

1. We know that in the first step, f̂2 = 0 at the start, so that we can write

β̂1 = argmin
β

∑
i

(yi − α− βxi1)
2
+ λβ2

=
x⊤
:,1y

x⊤
:,1x:,1 + λ

,

where x:,1 denotes the vector containing all observations of the first feature. Consequently, the

residual is y′ = y − β̂1x:,1. plugging this into the update for β̂2 we obtain

β̂2 =
x⊤
:,2y

′

x⊤
:,2x:,2 + λ

=
x⊤
:,2y

x⊤
:,2x:,2 + λ

− β̂1

x⊤
:,2x:,1

x⊤
:,2x:,2 + λ

,

which is an adjusted version of the estimate
x⊤
:,2y

x⊤
:,2x:,2+λ

obtained by “correcting for” the correlation

between the variables X1 and X2.
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