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Course Work #5: Unsupervised Learning

Problem 1 (). Principal Component Analysis
The first principal component is the direction of maximum variance in the data. Show that this first

principal component also minimizes the residual sum of squares, which is here the Euclidean squared
distance between the projected data points and the original data points.

Solution.

1. We define w as a unit vector along the first principal component. The distance of the projection of
a data point xi to zero is given by xi ∗ w (recall that data is centered around 0). The coordinate of
the projection is given by (xi ∗ w)w. We are interested in the distance between the data point xi

and this projection, which can be computed with Pythagoras’ theorem.

||xi − (xi ∗ w)w||2 + ||xi ∗ w||2 = ||xi||2

⇐⇒ ||xi − (xi ∗ w)w||2 = ||xi||2 − ||xi ∗ w||2

Adding up those squared distances over all data points (depending on the PC):

RSS(w) =

n∑
i=1

(||xi||2 − ||xi ∗ w||2)

=

n∑
i=1

||xi||2 −
n∑

i=1

||xi ∗ w||2

We now aim at minimizing this RSS. The first term does not depend on w and we can thus ignore it
for minimization. Due to the sign, we end up with maximizing the second term.

argmaxw

n∑
i=1

||xi ∗ w||2 = argmaxw
1

n

n∑
i=1

||xi ∗ w||2

Since, V ar(X) = E(X2)− E(X)2

→ 1

n

n∑
i=1

||xi ∗ w||2 = (
1

n

n∑
i=1

xi ∗ w)2 + V ar(xi ∗ w)
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Problem 2 (). Hierarchical Clustering
Suppose that for a particular data set, we perform hierarchical clustering using single linkage and using
complete linkage. We obtain two dendrograms.

1. • At a certain point on the single linkage dendrogram, the clusters {1, 2, 3} and {4, 5} fuse.
On the complete linkage dendrogram, the clusters {1, 2, 3} and {4, 5} also fuse at a certain
point.Which fusion will occur higher on the tree, or will they fuse at the same height, or is
there not enough information to tell?

• At a certain point on the single linkage dendrogram, the clusters {5} and {6} fuse. On the
complete linkage dendrogram, the clusters {5} and {6} also fuse at a certain point. Which
fusion will occur higher on the tree, or will they fuse at the same height, or is there not enough
information to tell?

Explain your reasoning for both the cases.

2. Name and explain one other choice of dissimilarity measure for hierarchical clustering apart from
the Euclidean distance metric. Give an example where your stated dissimilarity measure would be a
better than the Euclidean distance metric.

3. What are some practical considerations that one needs to take into account when applying clustering
on the data? Describe a total of four practical considerations with at least one consideration for
hierarchical and at least one for K-Means clustering.

Solution.

1. • Simple Answer: The clusters will most likely fuse at a higher point in case of complete
linkage since Complete and Single linkage consider the maximum resp. minimum distance
between clusters and by definition Max > Min,

Alternate Answer: There is not enough information to answer this. This is because we do
not know what distance metric is used. Note that the cluster numbers (i.e. {5} and {6}) are
just serial numbers and not the values of the clusters. Unless we know what distance metric is
used, we can not compute the distances. And If we can not compute the distances, we can not
make a claim about the height they would fuse at.

• In this case, we know that these clusters would fuse at the same height. We do not know what
the height is but we know that these clusters only contain a single observation, therefore the
score using single linkage and using complete linkage would be the same even though we do
not know the actual scoring metric. Therefore the height at which they fuse will be the same.

2. Correlation-based distance (but we allow any other reasonable answer): Considers two
observations to be similar if their features are highly correlated, even though the observed values
may be far apart in terms of Euclidean distance.

• For Hierarchal Clustering

(a) What dissimilarity measure should be used?

(b) What type of linkage should be used

(c) Where should we cut the dendogram in order to obtain clusters?

• For K-Means Clustering: How many clusters should we look for in the data?
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Problem 3 (). K-Means

1. • Show that the following equation holds :

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)
2 = 2

∑
i∈Ck

p∑
j=1

(xij − x̄kj)
2,

where |Ck| denotes the number of observations in cluster Ck, and x̄kj the mean for feature
j in cluster Ck. Argue on the basis of this identity, that the K-means clustering algorithm
decreases the objective

minimize
C1,...,CK


K∑

k=1

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)
2


at each iteration.

• Explain in your own words (a) what equality you are proving and (b) what you can conclude
from it.

Figure 1: 2 dimensional data for task 3 (from ESL Fig. 14.29).

2. Consider the data plot shown in Figure 1 where each colour denotes one cluster.

• Can we use k-means clustering to correctly cluster the data points? Why or why not?

• If you should use hierarchical clustering for this data, which linkage (complete, average, single
or centroid) would do best and why?

Solution.

3 of 4



Elements of Machine Learning, WS 2023/2024
Jilles Vreeken and Krikamol Muandet

Course Work #5: Unsupervised Learning

1.

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)
2 =

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

((xij − x̄kj)− (xi′j − x̄kj))
2

=
1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − x̄kj)
2 − 2(xij − x̄kj)(xi′j − x̄kj) + (xi′j − x̄kj)

2

for each element in Ck we have one of the first and the last terms

=
|Ck|
|Ck|

∑
i∈Ck

p∑
j=1

(xij − x̄kj)
2

+
|Ck|
|Ck|

∑
i′∈Ck

p∑
j=1

(xi′j − x̄kj)
2

− 2

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − x̄kj)(xi′j − x̄kj)

= 2
∑
i∈Ck

p∑
j=1

(xij − x̄kj)
2 − 2

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij −
1

|Ck|
∑
i∈Ck

xij)(xi′j − x̄kj)

= 2
∑
i∈Ck

p∑
j=1

(xij − x̄kj)
2 − 0

As mentioned in the lecture, we compute the cluster centroids at each step and specifically minimize the
distances from the cluster centroids thus minimizing the RHS of this formula. In turn, the LHS is also
minimized.

2. (a) No, k-means cannot be used in this setting because k-means algorithm tends to find spherical clusters
in the data.

(b) Single-linkage would do best because it works on the same principle as k-nearest neighbours. As the
data in the given figure has clusters in circles and the distance between the data points belonging
to different circles is more than the distance between the data points lying in the same circle, single
linkage would be the best to use in this setting. Both, complete and average linkage although being
the most popular ones, won’t do well here.
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