Lecture 9

# Dimensionality Reduction

ISLR 12, ESL 14, tSNE

Jilles Vreeken Krikamol Muandet







#### Supervised vs. Unsupervised Learning

We focused mostly on supervised learning, such as regression and classification

• the goal was to predict an outcome  $Y_{i}$ , from a set of features  $X_{1}, X_{2}, \dots, X_{p}$ 

In unsupervised learning we are only given the features  $X_1, X_2, ..., X_p$  and are interested in finding something interesting about the data, such as hidden (latent) structure

- discover patterns, subgroups, or clusters among the variables or observations
- project the data from a high- to a low-dimensional space
- informative ways to visualize the data
- anomaly detection

There also exist other learning paradigms, but these are out of scope for the lecture

- reinforcement learning
- self-supervised learning (e.g. reducing unsupervised to supervised learning)

### Unsupervised Learning

Unsupervised learning is exploratory and thus more challenging

- we have no clear target question no output guides our predictions
- it is therefore more difficult to assess the quality of our results
- compared to supervised where we could just look at e.g. the test error

#### There are also big advantages

- much easier to obtain large amounts of unlabeled data
- the most interesting tasks are unsupervised in nature, e.g. focused on discovery

#### Examples

- grouping genomic signatures of cancer samples by subtype
- characterizing shoppers browsing and purchasing habits
- movies grouped by the ratings assigned by movie viewers

#### Visual Data Exploration

1D data: compute summary statistics: mean, mode, median, quartiles, box-whiskers plot

1D data distribution: histograms, dots and bee-swarm plot, kernel density estimation, violin plot

2D data: scatter plots, density plots, hexagon plots







#### Visualizing more than two dimensions



original 3D data



2D reduction with PCA



#### Visualizing more than two dimensions



original 3D data



2D reduction with Sammon mapping



#### Visualizing more than two dimensions



#### Dimensionality Reduction: Further Motivation

High-dimensional data is highly challenging

- hard to visualize high-dimensional data
- highly correlated dimension cause trouble for many algorithms
- computation is expensive because of high complexity of distance functions

As dimensionality goes up, we are struck by the curse of dimensionality

- we need exponential amounts of data to characterize the density
- distances between points become meaningless, they all tend to the same value

Often, however, data lies on a low-dimensional manifold, embedded in a high-dimensional space

Goal: Reduce the dimensionality while avoiding information loss and preserving the structure

- uncover the intrinsic dimensionality of the data
- computational or memory savings

PCA







2D reduction with PCA



Example Population and ad spending for 100 different cities shown as circles

- Data are roughly linear along one direction with a small variance along a second direction
- Solid line indicates the first principal component (PC) direction, and dotted line the second PC
- Most of the variation is along the first PC

The PCs define a new coordinate system



Project points onto the first PC



The first PC is the direction in space along which variance of data is greatest

- if projected onto this direction the resulting one-dimensional dataset has the largest possible variance
- The **j**<sup>th</sup> PC is the direction orthogonal to all previous PCs, on which the remaining variance is largest

At the same time the first PC minimizes the sum of squared distances (dashed lines)

• the line that is closest to all the observations



Formally we define the first PC  $Z_1$  as a linear combination of mean-centered  $X_j$ 

 $Z_1 = \sum_{j=1}^p \phi_{j1}(X_j - \overline{X_j})$  for constants  $\phi_{11}, \phi_{21}, \dots, \phi_{p1}$  and means  $\overline{X_j}$ 

- we require  $\phi_{11} + \phi_{21} + \dots + \phi_{p1} = 1$  to prevent arbitrary scaling
- find  $\phi_{j1}$  such that variance is maximized / distance is minimized
- Z<sub>1</sub> is a n-dimensional vector
- its components  $z_{i1}$  are called the PC scores
- Solve the following problem subject to the scaling constraint

$$\max_{\phi_{11},\phi_{21},\dots,\phi_{p1}} \frac{1}{n} \sum_{i=1}^{n} z_{i1}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left( \sum_{j=1}^{p} \phi_{j1}(X_{j} - \overline{X}_{j}) \right)^{2}$$

variance



- first PC  $Z_1 = 0.839(pop \overline{pop}) + 0.544(ad \overline{ad})$
- we call the coefficients  $\phi_{11} = 0.839$ ,  $\phi_{21} = 0.544$  the component loadings

#### Facts

- out of every linear combination of **pop** and **ad** with  $\phi_{11}^2 + \phi_{21}^2 = 1$ , the first PC has the highest variance i.e.  $Var(\phi_{11}(pop - \overline{pop}) + \phi_{21}(ad - \overline{ad}))$  is maximum
- at the same time first PC is the closest line to the data

• second PC 
$$Z_2 = 0.544(pop - \overline{pop}) - 0.839(ad - \overline{ad})$$



#### PCA of the **USArrests** dataset

- statistics in arrests per 100,000 residents in the US (1973)
- 50 observations, 1 per state, 4 inputs
  - Murder numeric murder arrests
  - Assault: numeric assault arrests
  - **UrbanPop**: percent urban population
  - **Rape**: numeric rape arrests

|          | PC1       | PC2        |
|----------|-----------|------------|
| Murder   | 0.5358995 | -0.4181809 |
| Assault  | 0.5831836 | -0.1879856 |
| UrbanPop | 0.2781909 | 0.8728062  |
| Rape     | 0.5434321 | 0.1673186  |

PCA "loading vector" direction of the principal component



#### PCA of the **USArrests** dataset

- statistics in arrests per 100,000 residents in the US (1973)
- 50 observations, 1 per state, 4 inputs
  - Murder numeric murder arrests
  - Assault: numeric assault arrests
  - **UrbanPop**: percent urban population
  - **Rape**: numeric rape arrests

|          | PC1       | PC2        |
|----------|-----------|------------|
| Murder   | 0.5358995 | -0.4181809 |
| Assault  | 0.5831836 | -0.1879856 |
| UrbanPop | 0.2781909 | 0.8728062  |
| Rape     | 0.5434321 | 0.1673186  |

projection of feature vectors on principal component surface



#### Interpretation

- crime variables are highly correlated
  - projection vectors point in about same direction
- less correlation with UrbanPop

#### PC1 reflects crime rate

- high in California, Nevada, Florida
- low in W.-Virginia, the Dakotas etc.

#### PC2 reflects urbanization

- high in California
- low in the Carolinas and Mississippi



Interpretation 1

- PCs are directions of highest variance of the data
- PC score of an input is its projection onto the PC loading vector

Interpretation 2

- first PC minimizes the total sum of square distances
- second PC is the first PC of the residual, i.e. the direction in which the variance of the residual is maximized / distance is minimized
- the PC hyperplane is the affine subspace such that the total sum of square distances from the subspace is minimal



3D simulated dataset with the first two PCs

#### Interpretation 3

• PCA finds a linear transformation into a new coordinate system where the data is linearly uncorrelated

Interpretation 1

- PCs are directions of highest variance of the data
- PC score of an input is its projection onto the PC loading vector

Interpretation 2

- first PC minimizes the total sum of square distances
- second PC is the first PC of the residual, i.e. the direction in which the variance of the residual is maximized / distance is minimized
- the PC hyperplane is the affine subspace such that the total sum of square distances from the subspace is minimal



#### 3D simulated dataset with the first two PCs

#### Interpretation 3

PCA finds a linear transformation into a new coordinate system where the data is linearly uncorrelated

#### How to choose the number of PCs

If the goal is to use PCA for visualization then we can only select 2 or 3

If the goal is to preprocess the data before another method (e.g. before running regression)

- select #PCs such that a target proportion of the total variance is explained (PVE)
  - total variance is  $\sum_{j=1}^{p} \operatorname{Var}(X_j)$
  - variance explained by the m-th principal component  $Var(Z_m)$
- if we select k components, we explain  $\frac{\sum_{i=1}^{k} \operatorname{Var}(Z_m)}{\sum_{j=1}^{p} \operatorname{Var}(X_j)}$ 
  - select *k* such that the above fraction equals e.g. 90%
  - look for an elbow in the PVE plot

We can also just use cross-validation on the final dowstream error

• but only if such an error exists for our actual task...

PCA finds the global (linear) structure in the data

- can lead to local inconsistencies
- far away points can become nearest neighbors
- depending on the application this is a problem

Idea: Preserve local structure (distances) instead



### Sammon Mapping (MDS)



original 3D data



2D reduction with Sammon mapping



#### MDS: Multidimensional Scaling

Project high-dimensional distances onto low-dimensional space  $\mathbb{R}^k$ 

- let data points be  $x_1, \dots, x_N \in \mathbb{R}^p$
- project onto  $z_1, \dots, z_N \in \mathbb{R}^k$
- minimize a stress function S

Kruskal-Shepard (least-squares):  $S_M(z_1, \dots, z_N) = \sum_{i \neq i'} (d_{ii'} - ||z_i - z_{i'}||)^2$ 

Sammon mapping: 
$$S_{S_m}(z_1, ..., z_N) = \sum_{i \neq i'} \frac{(d_{ii'} - ||z_i - z_{i'}||)^2}{d_{ii'}}$$

emphasizes preserving smaller distances

### Multidimensional Scaling & PCA

#### Minimization by gradient descent

- classic scaling for similarities  $s_{ii'}$
- often we use the centered inner product  $s_{ii'} = \langle x_i \bar{x}, x_{i'} \bar{x} \rangle$
- we then minimize

$$S_C(z_1,\ldots,z_N) = \sum_{i,i'} (s_{ii'} - \langle z_i - \overline{z}, z_{i'} - \overline{z} \rangle)^2$$

by choosing  $z_1, \dots, z_N \in \mathbb{R}^k$ 

- this has a solution in terms of eigenvectors
- if the similarities are centered inner products then in fact this is exactly principal components

#### Multidimensional Scaling

MDS only needs the similarities or dissimilarities, not the actual point coordinates

The non-metric version of Shepard-Kruskal scaling only needs ranks

$$S_{NM}(z_1, \dots, z_N) = \frac{\sum_{i \neq i'} [\|z_i - z_{i'}\| - \theta(d_{ii'})]^2}{\sum_{i \neq i'} \|z_i - z_{i'}\|^2}$$

- $\theta$  is an arbitrary increasing function
- with  $\theta$  fixed we minimize over  $z_i$  by gradient descent
- with  $z_i$  fixed the best monotonic  $\theta$  is found by "isotonic regression" (version of quadratic programming)

### Example Multidimensional Scaling

#### Antigenic shift of influenza virus

- original space has 79 dimensions
- multiple runs of gradient descent with random starting solutions
- level of increase of stress function with decreasing k can point to "dimensionality" of the data
- here results do not change significantly if one projects to 2, 3, 4, or 5 dimensions



#### t-SNE



#### Stochastic Neighbor Embedding



high-dimensional space

low-dimensional space

### **1** High-Dimensional Similarities



### **1** High-Dimensional Similarities



### **1** High-Dimensional Similarities

Choose  $\sigma_i$  to achieve a fixed perplexity  $2^{H(P_i)}$ , controls the effective number of neighbors



### **2** Low-Dimensional Similarities



## 3 Comparing Distributions



### **3** Comparing Distributions

Find an embedding Z minimizing the difference between all  $P_i$ ,  $Q_i$  distributions



### **3** Comparing Distributions with KL divergence

The KL divergence is a principled way to measure the "distance" between distributions

$$C_{i} = KL(P_{i} \parallel Q_{i}) = H(P_{i}, Q_{i}) - H(P_{i}) = \sum_{i \neq j} p_{j|i} \cdot \log \frac{p_{j|i}}{q_{j|i}}$$
  
expected #bits to encode  $P_{i}$  using  $Q_{i}$  expected #bits to encode  $P_{i}$ 

example: given P optimize Q

Properties of KL

- $KL(P_i \parallel Q_i) \ge 0$  for any  $P_i$  and  $Q_i$
- $KL(P_i \parallel Q_i) = 0$  iff  $P_i = Q_i$
- is asymmetric  $KL(P_i \parallel Q_i) = KL(Q_i \parallel P_i)$
- large penalty when small  $q_{j|i}$  for a large  $p_{j|i}$  but not vice versa

forward  $KL(P_i||Q_i)$  is mean-seeking

### Stochastic Neighbor Embedding (SNE) Summary

Go from distances in high-dimensional space to conditional probabilities

- $p_{j|i}$  is the probability that data point  $x_i$  "wants" data point  $x_j$  as its neighbour
- $q_{j|i}$  is the probability that transformed point  $z_i$  "wants" point  $z_j$  to be its neighbour
- variances  $\sigma_i$  are picked such that each point has "approximately the same number of neighbors"

Find  $z_i$ 's such that neighborhood probabilities are similar to those in original space Use KL divergence to measure the "distance" between neighborhood probabilities

Use gradient descent to find 
$$z_i$$
,  $\frac{\partial c_i}{\partial z_i} = 2\sum_j (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(z_i - z_j)$ 

can be interpreted as force-based layout

#### The Crowding Problem



#### The Crowding Problem



#### Solving the Crowding Problem



#### Stochastic Neighbor Embedding



#### t-distributed Stochastic Neighbor Embedding



#### From SNE to t-SNE

Use a symmetric distance function and joint instead of conditional probabilities

- One main P and Q by symmetrizing and normalizing  $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2n}$  and set  $p_{ii} = 0$
- $C = KL(P||Q) = \sum_{i,j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$
- makes the optimization problem easier to solve

Use t-distributions for the (lower dimensional) map space  $q_{ij} = \frac{(1+||y_i-y_j||^2)^{-1}}{\sum_{k\neq l}(1+||y_k-y_l||^2)^{-1}}$ 

- heavier (compared to Gaussian) tail of the t-distribution compensates for less space in lower dimensions
- volume of a ball scales with  $r^d$ , so discrepancy in available space gets more pronounced as r grows
- helps to avoid "crowding" effect and more faithfully reflect longer range structure

#### Another interpretation of SNE and t-SNE

Preserve neighborhood graph: low. dim neighbors as similar as possible to original neighbors



high dimensional data



neighbor / similarity graph

#### Another interpretation of SNE and t-SNE

Preserve **neighborhood** graph: low. dim neighbors as similar as possible to original neighbors

- construct neighborhood graph in high-dim. space
- initialize points in low-dim. space
- construct neighborhood graph in low-dim. space
- optimize coordinates so the two graphs look the same

Computing all pairwise distances can be very slow Idea: (Approximately) compute only k nearest neighbors



low-dim. graph

#### Word Association Data



SURROUNDINGS







#### Netflix Movies



#### Mouse Brain Cells



#### COIL-20 Object Data Set

#### Examples from COIL-20











#### Advantages and Disadvantages of t-SNE

- current standard for visualizing high-dimensional data
- helps understand "black-box" algorithms like DNN
- reduced "crowding problem" with heavy tailed distribution
- t-SNE plots can sometimes be mysterious or misleading
  - be very careful with interpretating cluster sizes, cluster distances, cluster densities!
- sensitive to hyperparameters
- not great for more than 3 dimensions
- random noise does not always look random
- no easy way to compute the embedding of new data

Popular alternative: Uniform Manifold Approximation and Projection (UMAP)

#### Interactive t-SNE

Interactive widgets to better understand t-SNE.



Summary

High-dimensional data is challenging in many ways

Goal of dimensionality reduction is to reduce the dimensions while preserving some structure

PCA is linear transformation that preserves the global structure

• finds the hyperplane that maximizes variance of the data / minimizes distance to projection

MDS directly preserves distances

t-SNE preserves similarity between datapoints defined by e.g. a Gaussian kernel