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Supervised vs. Unsupervised Learning

We focused mostly on supervised learning, such as regression and classification
 the goal was to predict an outcome 𝑌𝑌, from a set of features 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝

In unsupervised learning we are only given the features 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝 and are 
interested in finding something interesting about the data, such as hidden (latent) structure
 discover patterns, subgroups, or clusters among the variables or observations
 project the data from a high- to a low-dimensional space
 informative ways to visualize the data
 anomaly detection

There also exist other learning paradigms, but these are out of scope for the lecture
 reinforcement learning
 self-supervised learning (e.g. reducing unsupervised to supervised learning)
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Unsupervised Learning
Unsupervised learning is exploratory and thus more challenging
 we have no clear target question – no output guides our predictions
 it is therefore more difficult to assess the quality of our results
 compared to supervised where we could just look at e.g. the test error

There are also big advantages
 much easier to obtain large amounts of unlabeled data
 the most interesting tasks are unsupervised in nature, e.g. focused on discovery

Examples 
 grouping genomic signatures of cancer samples by subtype
 characterizing shoppers browsing and purchasing habits
 movies grouped by the ratings assigned by movie viewers
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Visual Data Exploration

1D data: compute summary statistics: mean, mode, median, quartiles, box-whiskers plot

1D data distribution: histograms, dots and bee-swarm plot, kernel density estimation, violin plot 

2D data: scatter plots, density plots, hexagon plots
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Visualizing more than two dimensions
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Visualizing more than two dimensions
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Dimensionality Reduction: Further Motivation

High-dimensional data is highly challenging
 hard to visualize high-dimensional data
 highly correlated dimension cause trouble for many algorithms
 computation is expensive because of high complexity of distance functions

As dimensionality goes up, we are struck by the curse of dimensionality
 we need exponential amounts of data to characterize the density
 distances between points become meaningless, they all tend to the same value

Often, however, data lies on a low-dimensional manifold, embedded in a high-dimensional space

Goal: Reduce the dimensionality while avoiding information loss and preserving the structure
 uncover the intrinsic dimensionality of the data
 computational or memory savings
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PCA
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Principal Component Analysis

Example Population and ad spending for 100 different cities shown as circles
 Data are roughly linear along one direction with a small variance along a second direction
 Solid line indicates the first principal component (PC) direction, and dotted line the second PC
 Most of the variation is along the first PC

 The PCs define a new coordinate system

 Project points onto the first PC
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Principal Component Analysis

The first PC is the direction in space along which variance of data is greatest
 if projected onto this direction the resulting one-dimensional dataset has the largest possible variance
 The 𝒋𝒋𝒕𝒕𝒕𝒕 PC is the direction orthogonal to all previous PCs, on which the remaining variance is largest

At the same time the first PC minimizes the sum of squared distances (dashed lines)
 the line that is closest to all the observations
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Principal Component Analysis

Formally we define the first PC 𝑍𝑍1 as a linear combination of mean-centered 𝑋𝑋𝑗𝑗
𝑍𝑍1 = ∑𝑗𝑗=1

𝑝𝑝 𝜙𝜙𝑗𝑗1(𝑋𝑋𝑗𝑗 − �𝑋𝑋𝑗𝑗) for constants 𝜙𝜙11,𝜙𝜙21, … ,𝜙𝜙𝑝𝑝1 and means �𝑋𝑋𝑗𝑗

 we require 𝜙𝜙11 + 𝜙𝜙21 + ⋯+ 𝜙𝜙𝑝𝑝1 = 1 to prevent arbitrary scaling
 find 𝜙𝜙𝑗𝑗1 such that variance is maximized / distance is minimized
 𝑍𝑍1 is a n-dimensional vector
 its components 𝑧𝑧𝑖𝑖1 are called the PC scores

 Solve the following problem subject to the scaling constraint

max
𝜙𝜙11,𝜙𝜙21,…,𝜙𝜙𝑝𝑝1

1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑧𝑧𝑖𝑖12 = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 ∑𝑗𝑗=1

𝑝𝑝 𝜙𝜙𝑗𝑗1(𝑋𝑋𝑗𝑗 − �𝑋𝑋𝑗𝑗)
2
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Example Principal Component Analysis

 first PC 𝑍𝑍1 = 0.839 pop− pop + 0.544 ad− ad

 we call the coefficients 𝜙𝜙11 = 0.839,𝜙𝜙21 = 0.544
the component loadings

Facts
 out of every linear combination of pop and ad

with 𝜙𝜙112 + 𝜙𝜙212 = 1, the first PC has the highest variance
i.e. 𝑉𝑉𝑉𝑉𝑉𝑉(𝜙𝜙11 pop − pop + 𝜙𝜙21 ad − ad ) is maximum

 at the same time first PC is the closest line to the data

 second PC 𝑍𝑍2 = 0.544 pop− pop − 0.839 ad− ad
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Example Principal Component Analysis

PCA of the USArrests dataset
 statistics in arrests per 100,000 residents in the US (1973)
 50 observations, 1 per state, 4 inputs

 Murder numeric murder arrests
 Assault: numeric assault arrests
 UrbanPop: percent urban population
 Rape: numeric rape arrests

(ISLR 10.2)IX 14

PC1 PC2

Murder 0.5358995 -0.4181809

Assault 0.5831836 -0.1879856

UrbanPop 0.2781909 0.8728062

Rape 0.5434321 0.1673186
PCA “loading vector”
direction of the principal component

Projection of feature on PCA plane in brown
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PCA of the USArrests dataset
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 50 observations, 1 per state, 4 inputs

 Murder numeric murder arrests
 Assault: numeric assault arrests
 UrbanPop: percent urban population
 Rape: numeric rape arrests

(ISLR 10.2)IX 15

PC1 PC2

Murder 0.5358995 -0.4181809
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Example Principal Component Analysis

Interpretation
 crime variables are highly correlated

 projection vectors point in about same direction
 less correlation with UrbanPop

PC1 reflects crime rate
 high in California, Nevada, Florida
 low in W.-Virginia, the Dakotas etc.

PC2 reflects urbanization
 high in California
 low in the Carolinas and Mississippi

(ISLR 10.2)IX 16



Principal Component Analysis

Interpretation 1
 PCs are directions of highest variance of the data
 PC score of an input is its projection onto the PC loading vector

Interpretation 2
 first PC minimizes the total sum of square distances
 second PC is the first PC of the residual, i.e. the direction in which

the variance of the residual is maximized / distance is minimized
 the PC hyperplane is the affine subspace such that the total sum 

of square distances from the subspace is minimal

Interpretation 3
 PCA finds a linear transformation into a new coordinate system where the data is linearly uncorrelated

(ISLR 10.2.2)IX 17
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How to choose the number of PCs
If the goal is to use PCA for visualization then we can only select 2 or 3

If the goal is to preprocess the data before another method (e.g. before running regression)
 select #PCs such that a target proportion of the total variance is explained (PVE)

 total variance is ∑𝑗𝑗=1
𝑝𝑝 Var(𝑋𝑋𝑗𝑗)

 variance explained by the 𝑚𝑚-th principal component Var(𝑍𝑍𝑚𝑚)

 if we select 𝑘𝑘 components, we explain ∑𝑖𝑖=1
𝑘𝑘 Var(𝑍𝑍𝑚𝑚)
∑𝑗𝑗=1
𝑝𝑝 Var(𝑋𝑋𝑗𝑗)

 select 𝑘𝑘 such that the above fraction equals e.g. 90%
 look for an elbow in the PVE plot

We can also just use cross-validation on the final dowstream error
 but only if such an error exists for our actual task…
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Principal Component Analysis

PCA finds the global (linear) structure in the data
 can lead to local inconsistencies
 far away points can become nearest neighbors
 depending on the application this is a problem

Idea: Preserve local structure (distances) instead
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Sammon Mapping (MDS)
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MDS: Multidimensional Scaling

Project high-dimensional distances onto low-dimensional space ℝ𝑘𝑘

 let data points be 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁 ∈ ℝ𝑝𝑝

 project onto 𝑧𝑧1, … , 𝑧𝑧𝑁𝑁 ∈ ℝ𝑘𝑘

 minimize a stress function 𝑆𝑆

Kruskal-Shepard (least-squares): 𝑆𝑆𝑀𝑀 𝑧𝑧1, … , 𝑧𝑧𝑁𝑁 = ∑𝑖𝑖≠𝑖𝑖′(𝑑𝑑𝑖𝑖𝑖𝑖′ − 𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖′ )2

Sammon mapping: 𝑆𝑆𝑆𝑆𝑚𝑚 𝑧𝑧1, … , 𝑧𝑧𝑁𝑁 = ∑𝑖𝑖≠𝑖𝑖′
(𝑑𝑑𝑖𝑖𝑖𝑖′− 𝑧𝑧𝑖𝑖−𝑧𝑧𝑖𝑖′ )2

𝑑𝑑𝑖𝑖𝑖𝑖′

 emphasizes preserving smaller distances

ESL 14.8IX 22



Multidimensional Scaling & PCA

Minimization by gradient descent
 classic scaling for similarities 𝑠𝑠𝑖𝑖𝑖𝑖′
 often we use the centered inner product 𝑠𝑠𝑖𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖 − �̅�𝑥, 𝑥𝑥𝑖𝑖𝑖 − �̅�𝑥
 we then minimize

𝑆𝑆𝐶𝐶 𝑧𝑧1, … , 𝑧𝑧𝑁𝑁 = �
𝑖𝑖,𝑖𝑖𝑖

(𝑠𝑠𝑖𝑖𝑖𝑖′ − 𝑧𝑧𝑖𝑖 − ̅𝑧𝑧, 𝑧𝑧𝑖𝑖′ − ̅𝑧𝑧 )2

by choosing 𝑧𝑧1, … , 𝑧𝑧𝑁𝑁∈ ℝ𝑘𝑘

 this has a solution in terms of eigenvectors
 if the similarities are centered inner products then in fact this is exactly principal components
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Multidimensional Scaling

MDS only needs the similarities or dissimilarities, not the actual point coordinates

The non-metric version of Shepard-Kruskal scaling only needs ranks

𝑆𝑆𝑁𝑁𝑀𝑀 𝑧𝑧1, … , 𝑧𝑧𝑁𝑁 =
∑𝑖𝑖≠𝑖𝑖′ 𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖′ − 𝜃𝜃(𝑑𝑑𝑖𝑖𝑖𝑖′) 2

∑𝑖𝑖≠𝑖𝑖′ 𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖′ 2

 θ is an arbitrary increasing function
 with θ fixed we minimize over 𝑧𝑧𝑖𝑖 by gradient descent
 with 𝑧𝑧𝑖𝑖 fixed the best monotonic θ is found by “isotonic regression” (version of quadratic programming)

ESL 14.8IX 24



Example Multidimensional Scaling

Antigenic shift of influenza virus
 original space has 79 dimensions
 multiple runs of gradient descent with random starting solutions
 level of increase of stress function with decreasing k

can point to “dimensionality” of the data
 here results do not change significantly 

if one projects to 2, 3, 4, or 5 dimensions

(Smith, Lapedes et al. Science 2004)IX 25



t-SNE
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Stochastic Neighbor Embedding

IX 27
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𝑋𝑋 𝑍𝑍

data

distances

𝑃𝑃 𝑄𝑄

similarities

1 23
≈



High-Dimensional Similarities
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High-Dimensional Similarities
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High-Dimensional Similarities

Choose 𝜎𝜎𝑖𝑖 to achieve a fixed perplexity 2𝐻𝐻 𝑃𝑃𝑖𝑖 , controls the effective number of neighbors
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Low-Dimensional Similarities
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Comparing Distributions
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Comparing Distributions

Find an embedding 𝑍𝑍 minimizing the difference between all 𝑃𝑃𝑖𝑖 ,𝑄𝑄𝑖𝑖 distributions
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Comparing Distributions with KL divergence

The KL divergence is a principled way to measure the “distance” between distributions
𝐶𝐶𝑖𝑖 = 𝐾𝐾𝐾𝐾 𝑃𝑃𝑖𝑖 ∥ 𝑄𝑄𝑖𝑖 = 𝐻𝐻 𝑃𝑃𝑖𝑖 ,𝑄𝑄𝑖𝑖 − 𝐻𝐻 𝑃𝑃𝑖𝑖 = �

𝑖𝑖≠𝑗𝑗
𝑝𝑝𝑗𝑗|𝑖𝑖 ⋅ log

𝑝𝑝𝑗𝑗|𝑖𝑖

𝑞𝑞𝑗𝑗|𝑖𝑖

Properties of KL
 𝐾𝐾𝐾𝐾 𝑃𝑃𝑖𝑖 ∥ 𝑄𝑄𝑖𝑖 ≥ 0 for any 𝑃𝑃𝑖𝑖 and 𝑄𝑄𝑖𝑖
 𝐾𝐾𝐾𝐾 𝑃𝑃𝑖𝑖 ∥ 𝑄𝑄𝑖𝑖 = 0 iff 𝑃𝑃𝑖𝑖 = 𝑄𝑄𝑖𝑖
 is asymmetric 𝐾𝐾𝐾𝐾 𝑃𝑃𝑖𝑖 ∥ 𝑄𝑄𝑖𝑖 = 𝐾𝐾𝐾𝐾 𝑄𝑄𝑖𝑖 ∥ 𝑃𝑃𝑖𝑖
 large penalty when small 𝑞𝑞𝑗𝑗|𝑖𝑖 for a large 𝑝𝑝𝑗𝑗|𝑖𝑖 but not vice versa
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3

expected #bits to encode 𝑃𝑃𝑖𝑖 using 𝑄𝑄𝑖𝑖 expected #bits to encode 𝑃𝑃𝑖𝑖

forward 𝐾𝐾𝐾𝐾(𝑃𝑃𝑖𝑖||𝑄𝑄𝑖𝑖)
is mean-seeking

reverse 𝐾𝐾𝐾𝐾(𝑄𝑄𝑖𝑖||𝑃𝑃𝑖𝑖)
is mode-seeking

example: given 𝑃𝑃 optimize 𝑄𝑄 



Stochastic Neighbor Embedding (SNE) Summary

Go from distances in high-dimensional space to conditional probabilities
 𝑝𝑝𝑗𝑗|𝑖𝑖 is the probability that data point 𝑥𝑥𝑖𝑖 “wants” data point 𝑥𝑥𝑗𝑗 as its neighbour
 𝑞𝑞𝑗𝑗|𝑖𝑖 is the probability that transformed point 𝑧𝑧𝑖𝑖 “wants” point 𝑧𝑧𝑗𝑗 to be its neighbour
 variances 𝝈𝝈𝒊𝒊 are picked such that each point has “approximately the same number of neighbors”

Find 𝑧𝑧𝑖𝑖 ’s such that neighborhood probabilities are similar to those in original space 
Use KL divergence to measure the “distance” between neighborhood probabilities 

Use gradient descent to find 𝑧𝑧𝑖𝑖 ,
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧𝑖𝑖

= 2∑𝑗𝑗 (𝑝𝑝𝑗𝑗|𝑖𝑖 − 𝑞𝑞𝑗𝑗|𝑖𝑖 + 𝑝𝑝𝑖𝑖|𝑗𝑗 − 𝑞𝑞𝑖𝑖|𝑗𝑗)(𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗)

 can be interpreted as force-based layout

(Hinton & Roweis, 2002)IX 35



The Crowding Problem

(Kobak et al. "Heavy-tailed kernels reveal a finer cluster structure in t-SNE visualisations”, 2019)IX 36



The Crowding Problem
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Solving the Crowding Problem
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Stochastic Neighbor Embedding

(Hinton & Roweis, 2002)IX 39
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𝑡𝑡-distributed Stochastic Neighbor Embedding

(van der Maarten & Hinton, 2008)IX 40
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From SNE to t-SNE

Use a symmetric distance function and joint instead of conditional probabilities
 One main 𝑃𝑃 and 𝑄𝑄 by symmetrizing and normalizing 𝑝𝑝𝑖𝑖𝑗𝑗 = 𝑝𝑝𝑖𝑖|𝑗𝑗 +𝑝𝑝𝑗𝑗|𝑖𝑖

2𝑛𝑛
and set 𝑝𝑝𝑖𝑖𝑖𝑖 = 0

 𝐶𝐶 = 𝐾𝐾𝐾𝐾(𝑃𝑃‖𝑄𝑄) = ∑𝑖𝑖,𝑗𝑗 𝑝𝑝𝑖𝑖𝑗𝑗log 𝑝𝑝𝑖𝑖𝑗𝑗
𝑞𝑞𝑖𝑖𝑗𝑗

 makes the optimization problem easier to solve

Use t-distributions for the (lower dimensional) map space 𝑞𝑞𝑖𝑖𝑗𝑗 = (1+ 𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗
2)−1

∑𝑘𝑘≠𝑙𝑙(1+ 𝑦𝑦𝑘𝑘−𝑦𝑦𝑙𝑙 2)−1

 heavier (compared to Gaussian) tail of the t-distribution compensates for less space in lower dimensions
 volume of a ball scales with 𝑉𝑉𝑑𝑑, so discrepancy in available space gets more pronounced as 𝑉𝑉 grows
 helps to avoid “crowding” effect and more faithfully reflect longer range structure

(van der Maarten & Hinton, 2008)IX 41



Another interpretation of SNE and t-SNE

Preserve neighborhood graph: low. dim neighbors as similar as possible to original neighbors

IX 42
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Another interpretation of SNE and t-SNE

Preserve neighborhood graph: low. dim neighbors as similar as possible to original neighbors

 construct neighborhood graph in high-dim. space
 initialize points in low-dim. space
 construct neighborhood graph in low-dim. space
 optimize coordinates so the two graphs look the same

Computing all pairwise distances can be very slow
Idea: (Approximately) compute only 𝑘𝑘 nearest neighbors 
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Word Association Data

https://lvdmaaten.github.io/tsne/IX 44



Netflix Movies 
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Mouse Brain Cells

(Mahfouz et al. 2014)IX 46



COIL-20 Object Data Set

(van der Maarten & Hinton, 2008)IX 47

Examples from COIL-20



Advantages and Disadvantages of t-SNE
 current standard for visualizing high-dimensional data
 helps understand ”black-box” algorithms like DNN
 reduced ”crowding problem” with heavy tailed distribution

 t-SNE plots can sometimes be mysterious or misleading
 be very careful with interpretating cluster sizes, cluster distances, cluster densities!

 sensitive to hyperparameters
 not great for more than 3 dimensions 
 random noise does not always look random 
 no easy way to compute the embedding of new data

Popular alternative: Uniform Manifold Approximation and Projection (UMAP)
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https://pair-code.github.io/understanding-umap/


Interactive t-SNE
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Interactive widgets to better understand t-SNE.

original               2                  5               30              50               100

different perplexity

https://distill.pub/2016/misread-tsne/


Summary

High-dimensional data is challenging in many ways 

Goal of dimensionality reduction is to reduce the dimensions while preserving some structure

PCA is linear transformation that preserves the global structure
 finds the hyperplane that maximizes variance of the data / minimizes distance to projection

MDS directly preserves distances

t-SNE preserves similarity between datapoints defined by e.g. a Gaussian kernel
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