Dimensionality Reduction

ISLR 12, ESL 14, tSNE

Jilles Vreeken
Krikamol Muandet

CISPA
INFORMATION SECURITY

Supervised vs. Unsupervised Learning

We focused mostly on supervised learning, such as regression and classification

- the goal was to predict an outcome Y, from a set of features $X_{1}, X_{2}, \ldots, X_{p}$

In unsupervised learning we are only given the features $X_{1}, X_{2}, \ldots, X_{p}$ and are
interested in finding something interesting about the data, such as hidden (latent) structure

- discover patterns, subgroups, or clusters among the variables or observations
- project the data from a high- to a low-dimensional space
- informative ways to visualize the data
- anomaly detection

There also exist other learning paradigms, but these are out of scope for the lecture

- reinforcement learning
- self-supervised learning (e.g. reducing unsupervised to supervised learning)

Unsupervised Learning

Unsupervised learning is exploratory and thus more challenging

- we have no clear target question - no output guides our predictions
- it is therefore more difficult to assess the quality of our results
- compared to supervised where we could just look at e.g. the test error

There are also big advantages

- much easier to obtain large amounts of unlabeled data
- the most interesting tasks are unsupervised in nature, e.g. focused on discovery

Examples

- grouping genomic signatures of cancer samples by subtype
- characterizing shoppers browsing and purchasing habits
- movies grouped by the ratings assigned by movie viewers

Visual Data Exploration

1D data: compute summary statistics: mean, mode, median, quartiles, box-whiskers plot

1D data distribution: histograms, dots and bee-swarm plot, kernel density estimation, violin plot

2D data: scatter plots, density plots, hexagon plots

Visualizing more than two dimensions

original 3D data

2 D reduction with PCA

Visualizing more than two dimensions

original 3D data

2D reduction with Sammon mapping

Visualizing more than two dimensions

original 3D data

2D reduction with t-SNE

Dimensionality Reduction: Further Motivation

High-dimensional data is highly challenging

- hard to visualize high-dimensional data
- highly correlated dimension cause trouble for many algorithms
- computation is expensive because of high complexity of distance functions

As dimensionality goes up, we are struck by the curse of dimensionality

- we need exponential amounts of data to characterize the density
- distances between points become meaningless, they all tend to the same value

Often, however, data lies on a low-dimensional manifold, embedded in a high-dimensional space
Goal: Reduce the dimensionality while avoiding information loss and preserving the structure

- uncover the intrinsic dimensionality of the data
- computational or memory savings

original 3D data

2 D reduction with PCA

Principal Component Analysis

Example Population and ad spending for 100 different cities shown as circles

- Data are roughly linear along one direction with a small variance along a second direction
- Solid line indicates the first principal component $(P C)$ direction, and dotted line the second PC
- Most of the variation is along the first PC
- The PCs define a new coordinate system

- Project points onto the first PC

Principal Component Analysis

The first PC is the direction in space along which variance of data is greatest

- if projected onto this direction the resulting one-dimensional dataset has the largest possible variance
- The $\boldsymbol{j}^{\boldsymbol{t h}} \mathrm{PC}$ is the direction orthogonal to all previous PCs, on which the remaining variance is largest

At the same time the first PC minimizes the sum of squared distances (dashed lines)

- the line that is closest to all the observations

Principal Component Analysis

Formally we define the first PC Z_{1} as a linear combination of mean-centered X_{j}

$$
Z_{1}=\sum_{j=1}^{p} \phi_{j 1}\left(X_{j}-\bar{X}_{j}\right) \text { for constants } \phi_{11}, \phi_{21}, \ldots, \phi_{p 1} \text { and means } \bar{X}_{j}
$$

- we require $\phi_{11}+\phi_{21}+\cdots+\phi_{p 1}=1$ to prevent arbitrary scaling
- find $\phi_{j 1}$ such that variance is maximized / distance is minimized
- Z_{1} is a n-dimensional vector
- its components $z_{i 1}$ are called the PC scores
- Solve the following problem subject to the scaling constraint

$$
\max _{\phi_{11}, \phi_{21}, \ldots, \phi_{p 1}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} z_{i 1}^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{p} \phi_{j 1}\left(X_{j}-\bar{X}_{j}\right)\right)^{2}
$$

variance

Example Principal Component Analysis

- first PC $Z_{1}=0.839(\mathrm{pop}-\overline{\mathrm{pop}})+0.544(\mathrm{ad}-\overline{\mathrm{ad}})$
- we call the coefficients $\phi_{11}=0.839, \phi_{21}=0.544$ the component loadings

Facts

- out of every linear combination of pop and ad with $\phi_{11}^{2}+\phi_{21}^{2}=1$, the first PC has the highest variance i.e. $\operatorname{Var}\left(\phi_{11}(\mathrm{pop}-\overline{\mathrm{pop}})+\phi_{21}(\mathrm{ad}-\overline{\mathrm{ad}})\right)$ is maximum
- at the same time first PC is the closest line to the data

- second PC $Z_{2}=0.544(\mathrm{pop}-\overline{\mathrm{pop}})-0.839(\mathrm{ad}-\overline{\mathrm{ad}})$

Example Principal Component Analysis

PCA of the USArrests dataset

- statistics in arrests per 100,000 residents in the US (1973)
- 50 observations, 1 per state, 4 inputs
- Murder numeric murder arrests
- Assault: numeric assault arrests
- UrbanPop: percent urban population
- Rape: numeric rape arrests

	PC1	PC2
Murder	0.5358995	-0.4181809
Assault	0.5831836	-0.1879856
UrbanPop	0.2781909	0.8728062
Rape	0.5434321	0.1673186

PCA "loading vector"
direction of the principal component

Example Principal Component Analysis

PCA of the USArrests dataset

- statistics in arrests per 100,000 residents in the US (1973)
- 50 observations, 1 per state, 4 inputs
- Murder numeric murder arrests
- Assault: numeric assault arrests
- UrbanPop: percent urban population
- Rape: numeric rape arrests

	PC1	PC2
Murder	0.5358995	-0.4181809
Assault	0.5831836	-0.1879856
UrbanPop	0.2781909	0.8728062
Rape	0.5434321	0.1673186

projection of feature vectors on principal component surface

Example Principal Component Analysis

Interpretation

- crime variables are highly correlated
- projection vectors point in about same direction
- less correlation with UrbanPop

PC1 reflects crime rate

- high in California, Nevada, Florida
- low in W.-Virginia, the Dakotas etc.

PC2 reflects urbanization

- high in California
- Iow in the Carolinas and Mississippi

Principal Component Analysis

Interpretation 1

- PCs are directions of highest variance of the data
- PC score of an input is its projection onto the PC loading vector

Interpretation 2

- first PC minimizes the total sum of square distances
- second PC is the first PC of the residual, i.e. the direction in which the variance of the residual is maximized / distance is minimized
- the PC hyperplane is the affine subspace such that the total sum of square distances from the subspace is minimal

Interpretation 3

3D simulated dataset with the first two PCs

- PCA finds a linear transformation into a new coordinate system where the data is linearly uncorrelated

Principal Component Analysis

Interpretation 1

- PCs are directions of highest variance of the data
- PC score of an input is its projection onto the PC loading vector

Interpretation 2

- first PC minimizes the total sum of square distances
- second PC is the first PC of the residual, i.e. the direction in which the variance of the residual is maximized / distance is minimized
- the PC hyperplane is the affine subspace such that the total sum of square distances from the subspace is minimal

Interpretation 3

3D simulated dataset with the first two PCs

- PCA finds a linear transformation into a new coordinate system where the data is linearly uncorrelated

How to choose the number of PCs

If the goal is to use PCA for visualization then we can only select 2 or 3
If the goal is to preprocess the data before another method (e.g. before running regression)

- select \#PCs such that a target proportion of the total variance is explained (PVE)
- total variance is $\sum_{j=1}^{p} \operatorname{Var}\left(X_{j}\right)$
- variance explained by the m-th principal component $\operatorname{Var}\left(Z_{m}\right)$
- if we select k components, we explain $\frac{\sum_{i=1}^{k} \operatorname{Var}\left(Z_{m}\right)}{\sum_{j=1}^{p} \operatorname{Var}\left(X_{j}\right)}$
- select k such that the above fraction equals e.g. 90%
- look for an elbow in the PVE plot

We can also just use cross-validation on the final dowstream error

- but only if such an error exists for our actual task...

Principal Component Analysis

PCA finds the global (linear) structure in the data

- can lead to local inconsistencies
- far away points can become nearest neighbors
- depending on the application this is a problem

Idea: Preserve local structure (distances) instead

Sammon Mapping (MDS)

original 3D data

2D reduction with Sammon mapping

MDS: Multidimensional Scaling

Project high-dimensional distances onto low-dimensional space \mathbb{R}^{k}

- let data points be $x_{1}, \ldots, x_{N} \in \mathbb{R}^{p}$
- project onto $z_{1}, \ldots, z_{N} \in \mathbb{R}^{k}$
- minimize a stress function S

Kruskal-Shepard (least-squares): $S_{M}\left(z_{1}, \ldots, z_{N}\right)=\sum_{i \neq i^{\prime}}\left(d_{i i^{\prime}}-\left\|z_{i}-z_{i^{\prime}}\right\|\right)^{2}$

Sammon mapping: $S_{S_{m}}\left(z_{1}, \ldots, z_{N}\right)=\sum_{i \neq i^{\prime}} \frac{\left(d_{i i^{\prime}}-\left\|z_{i}-z_{i^{\prime}}\right\|\right)^{2}}{d_{i i^{\prime}}}$

- emphasizes preserving smaller distances

Multidimensional Scaling \& PCA

Minimization by gradient descent

- classic scaling for similarities $s_{i i^{\prime}}$
- often we use the centered inner product $s_{i i \prime}=\left\langle x_{i}-\bar{x}, x_{i,}-\bar{x}\right\rangle$
- we then minimize

$$
S_{C}\left(z_{1}, \ldots, z_{N}\right)=\sum_{i, i \prime}\left(s_{i i^{\prime}}-\left\langle z_{i}-\bar{z}, z_{i^{\prime}}-\bar{z}\right\rangle\right)^{2}
$$

by choosing $z_{1}, \ldots, z_{N} \in \mathbb{R}^{k}$

- this has a solution in terms of eigenvectors
- if the similarities are centered inner products then in fact this is exactly principal components

Multidimensional Scaling

MDS only needs the similarities or dissimilarities, not the actual point coordinates

The non-metric version of Shepard-Kruskal scaling only needs ranks

$$
S_{N M}\left(z_{1}, \ldots, z_{N}\right)=\frac{\sum_{i \neq i^{\prime}}\left[\left\|z_{i}-z_{i^{\prime}}\right\|-\theta\left(d_{i i^{\prime}}\right)\right]^{2}}{\sum_{i \neq i^{\prime}}\left\|z_{i}-z_{i^{\prime}}\right\|^{2}}
$$

- θ is an arbitrary increasing function
- with θ fixed we minimize over z_{i} by gradient descent
" with z_{i} fixed the best monotonic θ is found by "isotonic regression" (version of quadratic programming)

Example Multidimensional Scaling

Antigenic shift of influenza virus

- original space has 79 dimensions
- multiple runs of gradient descent with random starting solutions
- level of increase of stress function with decreasing \boldsymbol{k} can point to "dimensionality" of the data
- here results do not change significantly if one projects to $2,3,4$, or 5 dimensions

t-SNE

original 3D data

2 D reduction with t-SNE

Stochastic Neighbor Embedding

high-dimensional space

low-dimensional space

1 High-Dimensional Similarities

1 High-Dimensional Similarities

1 High-Dimensional Similarities

Choose σ_{i} to achieve a fixed perplexity $2^{H\left(P_{i}\right)}$, controls the effective number of neighbors

2 Low-Dimensional Similarities

(3) Comparing Distributions

(3) Comparing Distributions

Find an embedding Z minimizing the difference between all P_{i}, Q_{i} distributions

(3) Comparing Distributions with KL divergence

The KL divergence is a principled way to measure the "distance" between distributions

$$
C_{i}=K L\left(P_{i} \| Q_{i}\right)=H\left(P_{i}, Q_{i}\right)-H\left(P_{i}\right)=\sum_{i \neq j} p_{j \mid i} \cdot \log \frac{p_{j \mid i}}{q_{j \mid i}}
$$

expected \#bits to encode P_{i} using Q_{i} expected \#bits to encode P_{i}

Properties of KL

- $K L\left(P_{i} \| Q_{i}\right) \geq 0$ for any P_{i} and Q_{i}
- $K L\left(P_{i} \| Q_{i}\right)=0$ iff $P_{i}=Q_{i}$
- is asymmetric $K L\left(P_{i} \| Q_{i}\right)=K L\left(Q_{i} \| P_{i}\right)$
- large penalty when small $q_{j \mid i}$ for a large $p_{j \mid i}$ but not vice versa
forward $K L\left(P_{i} \| Q_{i}\right)$ is mean-seeking

Stochastic Neighbor Embedding (SNE) Summary

Go from distances in high-dimensional space to conditional probabilities

- $p_{j \mid i}$ is the probability that data point x_{i} "wants" data point x_{j} as its neighbour
- $q_{j \mid i}$ is the probability that transformed point z_{i} "wants" point z_{j} to be its neighbour
- variances $\boldsymbol{\sigma}_{\boldsymbol{i}}$ are picked such that each point has "approximately the same number of neighbors"

Find z_{i} 's such that neighborhood probabilities are similar to those in original space Use KL divergence to measure the "distance" between neighborhood probabilities

Use gradient descent to find $z_{i}, \frac{\partial C_{i}}{\partial z_{i}}=2 \sum_{j}\left(p_{j \mid i}-q_{j \mid i}+p_{i \mid j}-q_{i \mid j}\right)\left(z_{i}-z_{j}\right)$

- can be interpreted as force-based layout

The Crowding Problem

The Crowding Problem

Solving the Crowding Problem

Stochastic Neighbor Embedding

high-dimensional space

low-dimensional space

t-distributed Stochastic Neighbor Embedding

high-dimensional space

low-dimensional space

From SNE to t-SNE

Use a symmetric distance function and joint instead of conditional probabilities

- One main P and Q by symmetrizing and normalizing $p_{i j}=\frac{p_{i \mid j}+p_{j \mid i}}{2 n}$ and set $p_{i i}=0$
- $C=K L(P \| Q)=\sum_{i, j} p_{i j} \log \frac{p_{i j}}{q_{i j}}$
- makes the optimization problem easier to solve

Use t-distributions for the (lower dimensional) map space $q_{i j}=\frac{\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}}{\sum_{k \neq l}\left(1+\left\|y_{k}-y_{l}\right\|^{2}\right)^{-1}}$

- heavier (compared to Gaussian) tail of the t-distribution compensates for less space in lower dimensions
- volume of a ball scales with r^{d}, so discrepancy in available space gets more pronounced as r grows
- helps to avoid "crowding" effect and more faithfully reflect longer range structure

Another interpretation of SNE and t-SNE

Preserve neighborhood graph: low. dim neighbors as similar as possible to original neighbors

high dimensional data

neighbor / similarity graph

Another interpretation of SNE and t-SNE

Preserve neighborhood graph: low. dim neighbors as similar as possible to original neighbors
high-dim. data

- construct neighborhood graph in high-dim. space
- initialize points in low-dim. space
- construct neighborhood graph in low-dim. space
- optimize coordinates so the two graphs look the same

Computing all pairwise distances can be very slow Idea: (Approximately) compute only k nearest neighbors

low-dim. data

low-dim. graph

Word Association Data

Netflix Movies

Mouse Brain Cells

COIL-20 Object Data Set

Examples from COIL-20

t-SNE

Isomap

Advantages and Disadvantages of t-SNE

- current standard for visualizing high-dimensional data
- helps understand "black-box" algorithms like DNN
- reduced "crowding problem" with heavy tailed distribution
- t-SNE plots can sometimes be mysterious or misleading
- be very careful with interpretating cluster sizes, cluster distances, cluster densities!
- sensitive to hyperparameters
- not great for more than 3 dimensions
- random noise does not always look random
- no easy way to compute the embedding of new data

Popular alternative: Uniform Manifold Approximation and Projection (UMAP)

Interactive t-SNE

Interactive widgets to better understand t-SNE.

Summary

High-dimensional data is challenging in many ways

Goal of dimensionality reduction is to reduce the dimensions while preserving some structure

PCA is linear transformation that preserves the global structure

- finds the hyperplane that maximizes variance of the data / minimizes distance to projection

MDS directly preserves distances
t-SNE preserves similarity between datapoints defined by e.g. a Gaussian kernel

