Recap 5 Dimensionality Reduction \& Clustering ISLR 12, ESL 14, tSNE

Jilles Vreeken
Krikamol Muandet

Lecture Recap 1

- Unsupervised Learning
- No prediction of known label Y, instead exploration, visualization and clustering

Flavors of Unsupervised Learning

t-SNE Embedding of MNIST
(Dimensionality Reduction)

Density Estimation
\& Data Visualization

Lecture Recap 1

-
- Principal Component Analysis
- Dimensionality reduction: transform high-dimensional data into interpretable low dimensional data
- Manifold hypothesis: data lives on low-dimensional manifold (e.g. 10 MNIST digits)
- Find linear combination ϕ of features X that maximizes the variance of the embedded data

Principal Component Analysis

Example: population and ad spending for 100 different cities shown as circles

- Data are roughly linear along one direction with a small variance along a second direction
- Solid line indicates the first principal component (PC) direction, and dotted line the second PC
- Most of the variation is along the first PC
- The PCs define a new coordinate system

- Project points onto the first PC

Lecture Recap 1

\square
■
-
■
■

- t-SNE
- PCA drawback: only linear mapping possible. T-SNE: designed for high dimensional data
- Idea: embed neighbouring points in high-dim space close to each other in low-dim
- Minimize KL-Divergence between source and target distribution

Stochastic Neighbor Embedding

high-dimensional space low-dimensional space

