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§ Unsupervised Learning
g No prediction of known label 𝑌, instead exploration, visualization and clustering 
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Flavors of Unsupervised Learning

t-SNE Embedding of MNIST
(Dimensionality Reduction)

0 3

Density Estimation
& Data Visualization

K-Means
(Clustering)



Lecture Recap 1

§ Unsupervised Learning
g No prediction of known label 𝑌, instead exploration, visualization and clustering 

§ Principal Component Analysis
g Dimensionality reduction: transform high-dimensional data into interpretable low dimensional data
g Manifold hypothesis: data lives on low-dimensional manifold (e.g. 10 MNIST digits)
g Find linear combination 𝜙 of features 𝑋 that maximizes the variance of the embedded data
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Principal Component Analysis

Example: population and ad spending for 100 different cities shown as circles
§ Data are roughly linear along one direction with a small variance along a second direction
§ Solid line indicates the first principal component (PC) direction, and dotted line the second PC
§ Most of the variation is along the first PC

§ The PCs define a new coordinate system

§ Project points onto the first PC
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Lecture Recap 1

§ Unsupervised Learning
g No prediction of known label 𝑌, instead exploration, visualization and clustering 

§ Principal Component Analysis
g Dimensionality reduction: transform high-dimensional data into interpretable low dimensional data
g Manifold hypothesis: data lives on low-dimensional manifold (e.g. 10 MNIST digits)
g Find linear combination 𝜙 of features 𝑋 that maximizes the variance of the embedded data

§ t-SNE
g PCA drawback: only linear mapping possible. T-SNE: designed for high dimensional data
g Idea: embed neighbouring points in high-dim space close to each other in low-dim
g Minimize KL-Divergence between source and target distribution
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Stochastic Neighbor Embedding
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