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Lecture Recap 1

= Unsupervised Learning
= No prediction of known label Y, instead exploration, visualization and clustering



Flavors of Unsupervised Learning

t=SNE Embedding of MNIST
(Dimensionality Reduction)
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Density Estimation
& Data Visualization
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Lecture Recap 1

= Principal Component Analysis
= Dimensionality reduction: transform high-dimensional data into interpretable low dimensional data
= Manifold hypothesis: data lives on low-dimensional manifold (e.g. 10 MNIST digits)
= Find linear combination ¢ of features X that maximizes the variance of the embedded data



Principal Component Analysis

Example: population and ad spending for 100 different cities shown as circles

= Data are roughly linear along one direction with a small variance along a second direction
Solid line indicates the first principal component (PC) direction, and dotted line the second PC
Most of the variation is along the first PC
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Lecture Recap 1

= t-SNE
= PCA drawback: only linear mapping possible. T-SNE: designed for high dimensional data
= ldea: embed neighbouring points in high-dim space close to each other in low-dim
= Minimize KL-Divergence between source and target distribution
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