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Clustering Applications

 User profiling
 Gene expression analysis
 Data compression
 Image segmentation
 Visualization
 ….
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The Clustering Problem

Given a set 𝑈𝑈 of objects and a distance 𝑑𝑑:𝑈𝑈2 → 𝑅𝑅+ between objects, group the objects of 𝑈𝑈
into clusters such that the 

distance between points in the same cluster is low and the 
distance between the points in different clusters is large

 small and large are not well defined

A clustering of 𝑈𝑈 can be 
 exclusive (each point belongs to exactly one cluster)
 probabilistic (each point has a probability of belonging to a cluster)
 fuzzy (each point can belong to multiple clusters)

The number of clusters can be pre-defined, or not 
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𝐾𝐾-means Clustering

Iterative method for calculating disjoint clusters
 𝐾𝐾 disjoint clusters 𝐶𝐶1, … ,𝐶𝐶𝐾𝐾 are subsets of the observations s.t. 𝐶𝐶1 ∪ 𝐶𝐶2 ∪⋯∪ 𝐶𝐶𝐾𝐾 = 1, … ,𝑛𝑛

𝐶𝐶𝑘𝑘 ∩ 𝐶𝐶𝑘𝑘𝑘 = ∅ for all 𝑘𝑘 ≠ 𝑘𝑘𝑘, i.e. each observation belongs to exactly one cluster
 for a good clustering the within-cluster variation 𝑊𝑊(𝐶𝐶𝑘𝑘) should be small min

𝐶𝐶1,…,𝐶𝐶𝑘𝑘
∑𝑘𝑘=1𝐾𝐾 𝑊𝑊(𝐶𝐶𝑘𝑘)

 there are many ways to define 𝑊𝑊 𝐶𝐶𝑘𝑘 n

 requires metric data space, often we use the Euclidean distance as the underlying metric

𝑊𝑊 𝐶𝐶𝑘𝑘 =
1
𝐶𝐶𝑘𝑘

�
𝑖𝑖,𝑖𝑖′∈𝐶𝐶𝑘𝑘

�
𝑗𝑗=1

𝑝𝑝

𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖′𝑗𝑗
2

=
1
𝐶𝐶𝑘𝑘

�
𝑖𝑖,𝑖𝑖′∈𝐶𝐶𝑘𝑘

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′
2

 the minimization is very difficult because there are many 𝑛𝑛𝑘𝑘 partitions of the data into 𝐾𝐾 clusters

 the choice of 𝐾𝐾 is a difficult model decision

(ISLR 12.4.1)X

cluster size
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𝐾𝐾-means Clustering
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Lloyd’s algorithm
ALGORITHM 12.2 𝐾𝐾-means clustering
1. randomly assign points to clusters
2. iterate until clusters stop changing

a) for each cluster compute its centroid (i.e. the average location of its members)
b) assign each observation to the cluster whose centroid is closest (in Euclidean distance)

Guaranteed to converge: finitely many configurations and 𝑊𝑊(𝐶𝐶𝑘𝑘) decreases at each iteration
 proof: observe

 In 2a) the centroids 𝑥̅𝑥𝑘𝑘 are chosen to minimize 𝑊𝑊 𝐶𝐶𝑘𝑘
 In 2b) the cluster assignments are chosen to minimize 𝑊𝑊 𝐶𝐶𝑘𝑘

(ISLR 12.4.1)X

1
𝐶𝐶𝑘𝑘

�
𝑖𝑖,𝑖𝑖′∈𝐶𝐶𝑘𝑘

�
𝑗𝑗=1

𝑝𝑝

𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖′𝑗𝑗
2

= 2 �
𝑖𝑖∈𝐶𝐶𝑘𝑘

�
𝑗𝑗=1

𝑝𝑝

𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑘𝑘𝑘𝑘
2 = 2 �

𝑖𝑖∈𝐶𝐶𝑘𝑘

𝑥𝑥𝑖𝑖 − 𝑥̅𝑥𝑘𝑘 2
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Another interpretation of 𝐾𝐾-means

Let 𝐶𝐶𝑘𝑘 be defined as before and define each cluster by its centroid 𝜇𝜇𝑘𝑘

We aim to minimize the objective min
𝜇𝜇𝑘𝑘,𝐶𝐶𝑘𝑘

∑𝑘𝑘=1𝐾𝐾 𝑊𝑊 𝐶𝐶𝑘𝑘 = 2∑𝑖𝑖∈𝐶𝐶𝑘𝑘 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 2

 i.e. find the best centroids and the best cluster assignments

This joint optimization is very difficult to solve, however the two subproblems are simple:
 fix 𝐶𝐶𝑘𝑘, the best exact solution for 𝜇𝜇𝑘𝑘 = 𝑥̅𝑥𝑘𝑘 is just the mean
 fix 𝜇𝜇𝑘𝑘, the best exact solution for 𝐶𝐶𝑘𝑘 is assigning the observation to the closest cluster

Therefore we do alternating optimization updating 𝐶𝐶𝑘𝑘 and 𝜇𝜇𝑘𝑘 in turn
This is a general strategy that works very well in many settings (e.g. GMMs)
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𝐾𝐾-means Clustering

ALGORITHM 12.2 𝐾𝐾-means clustering
1. randomly assign points to clusters
2. iterate until clusters stop changing

a) compute the centroid for each cluster
b) assign each observation to that 

cluster with the closest centroid

Iteratively minimize min
𝐶𝐶𝑘𝑘

2∑𝑖𝑖∈𝐶𝐶𝑘𝑘 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥𝑘𝑘 2 (*)

 In 2a) the centroids 𝑥̅𝑥𝑘𝑘 are chosen to minimize (*)
 In 2b) the cluster assignments 𝐶𝐶𝑘𝑘 are chosen to minimize (*)

X 9



𝐾𝐾-means Clustering

ALGORITHM 12.2 𝐾𝐾-means clustering
1. randomly assign points to clusters
2. iterate until clusters stop changing

a) compute the centroid for each cluster
b) assign each observation to that 

cluster with the closest centroid

Iteratively minimize min
𝐶𝐶𝑘𝑘

2∑𝑖𝑖∈𝐶𝐶𝑘𝑘 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥𝑘𝑘 2 (*)

 In 2a) the centroids 𝑥̅𝑥𝑘𝑘 are chosen to minimize (*)
 In 2b) the cluster assignments 𝐶𝐶𝑘𝑘 are chosen to minimize (*)

X 10



𝐾𝐾-means Clustering

ALGORITHM 12.2 𝐾𝐾-means clustering
1. randomly assign points to clusters
2. iterate until clusters stop changing

a) compute the centroid for each cluster
b) assign each observation to that 

cluster with the closest centroid

Iteratively minimize min
𝐶𝐶𝑘𝑘

2∑𝑖𝑖∈𝐶𝐶𝑘𝑘 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥𝑘𝑘 2 (*)

 In 2a) the centroids 𝑥̅𝑥𝑘𝑘 are chosen to minimize (*)
 In 2b) the cluster assignments 𝐶𝐶𝑘𝑘 are chosen to minimize (*)

X 11



𝐾𝐾-means Clustering

ALGORITHM 12.2 𝐾𝐾-means clustering
1. randomly assign points to clusters
2. iterate until clusters stop changing

a) compute the centroid for each cluster
b) assign each observation to that 

cluster with the closest centroid

Iteratively minimize min
𝐶𝐶𝑘𝑘

2∑𝑖𝑖∈𝐶𝐶𝑘𝑘 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥𝑘𝑘 2 (*)

 In 2a) the centroids 𝑥̅𝑥𝑘𝑘 are chosen to minimize (*)
 In 2b) the cluster assignments 𝐶𝐶𝑘𝑘 are chosen to minimize (*)

X 12
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𝐾𝐾-means Clustering

ALGORITHM 12.2 𝐾𝐾-means clustering
1. randomly assign points to clusters
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𝐾𝐾-means initialization

𝐾𝐾-means clustering is greedy and thus only finds a local optimum
 thus it is important to run the algorithm multiple times each with different starting solutions
 here results for six random starting solutions, with K=3
 the smallest within-cluster variation is 235.8

In practice 𝐾𝐾-means++ is the most popular algorithm for choosing the initial centroids

(ISLR 12.4.1)X 15



𝐾𝐾-medoids

Limitation of 𝐾𝐾-means
 needs a metric space (when the centroids of the clusters are chosen)
 sensitive to outliers

𝐾𝐾-medoids clustering algorithm proceeds iteratively, just like 𝐾𝐾-means
 for a given cluster assignment 𝐶𝐶 find medoids
 given a set of medoids, minimize total error by assigning each observation to the closest medoid

Medoid: the observation that is closest (least dissimilar) to all other observations in the cluster
𝑖𝑖𝑘𝑘∗ = arg min

𝑖𝑖:𝐶𝐶𝑖𝑖=𝑘𝑘
�

𝑗𝑗:𝐶𝐶 𝑗𝑗 =𝑘𝑘

𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

 can also be used if only dissimilarity matrices are given (does not need the metric space)
 computation of a cluster center increases from 𝑁𝑁 to 𝑁𝑁2

(ESL 13.3.10)X 16



Elbow Method

Heuristic: look for the “elbow”, the inflection point of a curve to select a hyperparameter
 intuition: increasing the parameter (e.g. number of clusters, number of PC, etc.) always improves the fit 

but there are diminishing returns and we should stop early to prevent overfitting
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Hierarchical Clustering

Having to choose 𝐾𝐾 is a problem with 𝐾𝐾-means clustering

Hierarchical clustering does not have this requirement
 there are top-down and bottom-up versions
 top-down (divisive):

recursively bisect the dataset into clusters
 bottom-up (agglomerative):

start with singleton clusters and iteratively merge clusters

Both methods produce tree-like dendrograms

(ISLR 12.4.2)X

Simulated dataset with three classes 
depicted by color. The class labels are 
unknown to the clustering algorithm.

18



Interpreting a Dendrogram

A tree-like structure where
 each leaf represents an observation
 each internal node is the root of a subtree that can be considered a cluster

 𝑦𝑦-coordinate shows the dissimilarity of the two clusters joined by a node
 ordering along 𝑥𝑥-axis is arbitrary (as long as it obeys the tree topology)

 often secondary criteria are used to select this ordering
 distance along the horizontal axis does not reflect similarity of observations

(ISLR 12.4.2)X

Dendogram for 
hierarchical clustering 
with complete linkage
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Interpreting a Dendrogram

A tree-like structure where
 each leaf represents an observation
 each internal node is the root of a subtree that can be considered a cluster

 𝑦𝑦-coordinate shows the dissimilarity of the two clusters joined by a node
 ordering along 𝑥𝑥-axis is arbitrary (as long as it obeys the tree topology)

 often secondary criteria are used to select this ordering
 distance along the horizontal axis does not reflect similarity of observations

Horizontal cuts in the dendrogram result in disjoint clusters
 cut at 9 results in two clusters

(ISLR 12.4.2)X

Dendogram for 
hierarchical clustering 
with complete linkage
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Interpreting a Dendrogram

A tree-like structure where
 each leaf represents an observation
 each internal node is the root of a subtree that can be considered a cluster

 𝑦𝑦-coordinate shows the dissimilarity of the two clusters joined by a node
 ordering along 𝑥𝑥-axis is arbitrary (as long as it obeys the tree topology)

 often secondary criteria are used to select this ordering
 distance along the horizontal axis does not reflect similarity of observations

Horizontal cuts in the dendrogram result in disjoint clusters
 cut at 9 results in two clusters
 cut at 5 results in three clusters
 the lower the cut, the more clusters

(ISLR 12.4.2)X

Dendogram for 
hierarchical clustering 
with complete linkage
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Interpreting a Dendrogram

Distance along the horizontal axis does not reflect similarity of observations

X

dendrogramraw data

(ISLR 12.4.2) 22



Other Visualizations of Dendrograms

(ISLR 12.4.2)X

All leaf prongs are drawn at the zero y-coordinate
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Hierarchical Clustering

A dendrogram is not always appropriate for capturing the cluster structure of a data set
 some datasets do not have hierarchical structure
 in such case hierarchical clustering leads to worse results than 𝐾𝐾-means 

in terms of cluster coherence (the inverse of within-cluster variance)

(ISLR 12.4.2)X
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Agglomerative Clustering

Agglomerative clustering is superior to divisive clustering
 divisive clustering is at risk of forming wrong partitions early on that cannot be rectified
 agglomerative clustering repeatedly joins the two most similar (least dissimilar) clusters

ALGORITHM 12.3 Agglomerative Clustering
1. each observation is its own singleton cluster, compute all pairwise dissimilarities between observations
2. For 𝑖𝑖 = 𝑛𝑛,𝑛𝑛 − 1, … , 2 do:

a) fuse the two most similar clusters and set the height of the respective node in
the dendrogram as the dissimilarity between these two clusters

b) compute new pairwise dissimilarities between the clusters

Several notions of cluster dissimilarity are available
 all are based on the matrix of pairwise dissimilarities of the observations

(ISLR 12.4.2)X 25



Notions of Cluster Dissimilarity

Let (𝑑𝑑𝑖𝑖𝑖𝑖)𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛 be the pairwise dissimilarity matrix, often using the Euclidian distance  
and let 𝑑𝑑(𝐺𝐺,𝐻𝐻) be the dissimilarity between two clusters 𝐺𝐺 and 𝐻𝐻

Complete linkage (CL) 𝑑𝑑𝐶𝐶𝐶𝐶 𝐺𝐺,𝐻𝐻 = max
𝑖𝑖∈𝐺𝐺,𝑗𝑗∈𝐻𝐻

𝑑𝑑𝑖𝑖𝑖𝑖
 leads to compact clusters 

Single linkage (SL)   𝑑𝑑𝑆𝑆𝑆𝑆 𝐺𝐺,𝐻𝐻 = min
𝑖𝑖∈𝐺𝐺,𝑗𝑗∈𝐻𝐻

𝑑𝑑𝑖𝑖𝑖𝑖
 can lead to snake-like clusters

(Group) average linkage (GA) 𝑑𝑑𝐺𝐺𝐺𝐺 𝐺𝐺,𝐻𝐻 = 1
𝑁𝑁𝐺𝐺𝑁𝑁𝐻𝐻

∑𝑖𝑖∈𝐺𝐺 ∑𝑗𝑗∈𝐻𝐻 𝑑𝑑𝑖𝑖𝑖𝑖
 compromise between the previous two extremes

(ISLR 12.4.2)X 26



The Case Against Centroid Linkage
Let (𝑑𝑑𝑖𝑖𝑖𝑖)𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛 be the dissimilarity matrix, often using the Euclidian distance  
and let 𝑑𝑑(𝐺𝐺,𝐻𝐻) be the dissimilarity between two clusters 𝐺𝐺 and 𝐻𝐻

Centroid linkage (CTL) 𝑑𝑑𝐶𝐶𝑇𝑇𝑇𝑇 𝐺𝐺,𝐻𝐻 = 𝐺̅𝐺 − �𝐻𝐻
2

 where 𝐺̅𝐺 and �𝐻𝐻 are the centroids of the two clusters

Can result in undesired inversions

(ISLR 12.4.2)X

http://nlp.stanford.edu/IR-book/html/htmledition/centroid-clustering-1.html
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Notions of Cluster Dissimilarity

Diameter of a cluster G is defined as 𝐷𝐷𝐺𝐺 = max
𝑖𝑖,𝑗𝑗∈𝐺𝐺

𝑑𝑑𝑖𝑖𝑖𝑖
 CL clusters have small diameter
 SL cluster can have large diameter
 GA and CTL are in between

Group average dissimilarity is a sound estimate of mean distance
𝑑𝑑𝐺𝐺𝐺𝐺 𝐺𝐺,𝐻𝐻 = ∫ ∫ 𝑑𝑑 𝑥𝑥, 𝑥𝑥′ 𝑝𝑝𝐺𝐺 𝑥𝑥 𝑝𝑝𝐻𝐻 𝑥𝑥′ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 the mean is taken over distances in a continuous data space

 as 𝑛𝑛 → ∞ we have that 𝑑𝑑𝐺𝐺𝐺𝐺 𝐺𝐺,𝐻𝐻 = 1
𝑁𝑁𝐺𝐺𝑁𝑁𝐻𝐻

∑𝑖𝑖∈𝐺𝐺 ∑𝑗𝑗∈𝐻𝐻 𝑑𝑑𝑖𝑖𝑖𝑖 approaches the equation above

 𝑑𝑑𝑆𝑆𝑆𝑆 𝐺𝐺,𝐻𝐻 approaches 0
 𝑑𝑑𝐶𝐶𝐶𝐶 𝐺𝐺,𝐻𝐻 approaches ∞

(ISLR 12.4.2)X 28



Example Agglomerative Hierarchical Clustering

(ISLR 12.4.2)X 29



Agglomerative Hierarchical Clustering Example

(ISLR 12.4.2)X

5  7
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Agglomerative Hierarchical Clustering Example

(ISLR 12.4.2)X
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Agglomerative Hierarchical Clustering Example

(ISLR 12.4.2)X
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Dendograms Vary with the Linkage Methods

Example of hierarchical clustering on a human tumor microarray data set

(ISLR 12.4.2)X 33



Choice of dissimilarity matrix

So far we used Euclidean distance, correlation-based distance is sometimes more appropriate
 similar observations have feature vectors with high correlation, even if the are far in Euclidean distance
 focuses on shapes of observation profiles rather than their magnitudes

(ISLR 12.4.2)X

 observations 1 and 3 are similar w.r.t. Euclidean 
distance but not w.r.t. correlation-based distance

 observations 1 and 2 are similar w.r.t. correlation-
based distance but not w.r.t. Euclidean distance

 observations 2 and 3 are not similar w.r.t. either

34



Example Shoppers Buying Profiles

When to use which distance matrix?
 goal: suggest items that shoppers are likely to want to buy
 feature values are quantity of each item bought
 here we are more interested in shape than in magnitude
 so correlation-based distance appears more appropriate

When should we standardize the data?
 shoppers may tend to buy more socks than computers
 without standardization socks will dominate the dissimilarity values, even though 

 computers might be the more interesting item for the retailer
 socks may be less informative about the customer than the number of computers bought 

 standardization gives each variable equal importance
 standardization is also good, if different variables are measured in different scales

(ISLR 12.4.2)X

#items bought for 8 customers
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Example Shoppers Buying Profiles

When to use which distance matrix?
 goal: suggest items that shoppers are likely to want to buy
 feature values are quantity of each item bought
 here we are more interested in shape than in magnitude
 so correlation-based distance appears more appropriate

When should we standardize the data?
 shoppers may tend to buy more socks than computers
 without standardization socks will dominate the dissimilarity values, even though 

 computers might be the more interesting item for the retailer
 socks may be less informative about the customer than the number of computers bought 

 standardization gives each variable equal importance
 standardization is also good, if different variables are measured in different scales

(ISLR 12.4.2)X

#items after standardization
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Example Shoppers Buying Profiles

When to use which distance matrix?
 goal: suggest items that shoppers are likely to want to buy
 feature values are quantity of each item bought
 here we are more interested in shape than in magnitude
 so correlation-based distance appears more appropriate

When should we standardize the data?
 shoppers may tend to buy more socks than computers
 without standardization socks will dominate the dissimilarity values, even though 

 computers might be the more interesting item for the retailer
 socks may be less informative about the customer than the number of computers bought 

 standardization gives each variable equal importance
 standardization is also good, if different variables are measured in different scales

(ISLR 12.4.2)X

#dollars spent
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Practical Issues in Clustering

Small decisions with big consequences
 should we standardize the data?
 for hierarchical clustering

 which dissimilarity matrix?
 which type of linkage?
 where to place the dendrogram cut?

 for K-means clustering
 how to set K?

 Validating the clusters
 difficult topic
 if we have labels for at least some observations we can assess class purity
 otherwise we can use the bootstrap to analyze the robustness of clusters

(ISLR 12.4.3)X 38



Clustering Both Features and Observations

X

Apply hierarchical separately on both the
 observartions using distance between features
 features using distance between observations

Visualize the entire dataset as a matrix where
rows and columns are sorted by the clusters

Can reveal interesting patterns in the data

Link to an interactive tool

clustering of the Iris dataset from clustergrammer
39
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Different Variants of Clustering

Here, we have assigned each observation to exactly one cluster
 often, it is desirable to give a preference of observations to several clusters

 a probability that the observation belongs to the cluster
 there are “soft” versions of 𝐾𝐾-means based on this principle
 often clusters are not very robust to changes in the data

Sometimes it is desirable to assign observations to multiple clusters instead of a single one
 see also community detection in e.g. social networks

Be cautious and thoughtful when you cluster data!
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Summary

K-means 
 find a predefined number of clusters such that each observation is assigned to the closest centroid
 greedy iterative algorithm that alternatingly updates the clusters assignments and centroids 

Hierarchical clustering
 find a hierarchy of potential clusterings visually represented with a dendogram
 agglomerative clustering merges clusters in a bottom-up manner based on cluster dissimilarity metrics

Other Unsupervised Learning Methods
 dependency discovery
 pattern mining
 graph mining

X

 causal inference
 anomaly detection
 and many, many, many more…
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