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Clustering Applications

 User profiling
 Gene expression analysis
 Data compression
 Image segmentation
 Visualization
 ….
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The Clustering Problem

Given a set 𝑈𝑈 of objects and a distance 𝑑𝑑:𝑈𝑈2 → 𝑅𝑅+ between objects, group the objects of 𝑈𝑈
into clusters such that the 

distance between points in the same cluster is low and the 
distance between the points in different clusters is large

 small and large are not well defined

A clustering of 𝑈𝑈 can be 
 exclusive (each point belongs to exactly one cluster)
 probabilistic (each point has a probability of belonging to a cluster)
 fuzzy (each point can belong to multiple clusters)

The number of clusters can be pre-defined, or not 
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𝐾𝐾-means Clustering

Iterative method for calculating disjoint clusters
 𝐾𝐾 disjoint clusters 𝐶𝐶1, … ,𝐶𝐶𝐾𝐾 are subsets of the observations s.t. 𝐶𝐶1 ∪ 𝐶𝐶2 ∪⋯∪ 𝐶𝐶𝐾𝐾 = 1, … ,𝑛𝑛

𝐶𝐶𝑘𝑘 ∩ 𝐶𝐶𝑘𝑘𝑘 = ∅ for all 𝑘𝑘 ≠ 𝑘𝑘𝑘, i.e. each observation belongs to exactly one cluster
 for a good clustering the within-cluster variation 𝑊𝑊(𝐶𝐶𝑘𝑘) should be small min

𝐶𝐶1,…,𝐶𝐶𝑘𝑘
∑𝑘𝑘=1𝐾𝐾 𝑊𝑊(𝐶𝐶𝑘𝑘)

 there are many ways to define 𝑊𝑊 𝐶𝐶𝑘𝑘 n

 requires metric data space, often we use the Euclidean distance as the underlying metric

𝑊𝑊 𝐶𝐶𝑘𝑘 =
1
𝐶𝐶𝑘𝑘

�
𝑖𝑖,𝑖𝑖′∈𝐶𝐶𝑘𝑘

�
𝑗𝑗=1

𝑝𝑝

𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑥𝑥𝑖𝑖′𝑗𝑗
2

=
1
𝐶𝐶𝑘𝑘

�
𝑖𝑖,𝑖𝑖′∈𝐶𝐶𝑘𝑘

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′
2

 the minimization is very difficult because there are many 𝑛𝑛𝑘𝑘 partitions of the data into 𝐾𝐾 clusters

 the choice of 𝐾𝐾 is a difficult model decision

(ISLR 12.4.1)X

cluster size
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𝐾𝐾-means Clustering
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Lloyd’s algorithm
ALGORITHM 12.2 𝐾𝐾-means clustering
1. randomly assign points to clusters
2. iterate until clusters stop changing

a) for each cluster compute its centroid (i.e. the average location of its members)
b) assign each observation to the cluster whose centroid is closest (in Euclidean distance)

Guaranteed to converge: finitely many configurations and 𝑊𝑊(𝐶𝐶𝑘𝑘) decreases at each iteration
 proof: observe

 In 2a) the centroids �̅�𝑥𝑘𝑘 are chosen to minimize 𝑊𝑊 𝐶𝐶𝑘𝑘
 In 2b) the cluster assignments are chosen to minimize 𝑊𝑊 𝐶𝐶𝑘𝑘

(ISLR 12.4.1)X
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𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑥𝑥𝑘𝑘𝑗𝑗
2 = 2 �

𝑖𝑖∈𝐶𝐶𝑘𝑘
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Another interpretation of 𝐾𝐾-means

Let 𝐶𝐶𝑘𝑘 be defined as before and define each cluster by its centroid 𝜇𝜇𝑘𝑘

We aim to minimize the objective min
𝜇𝜇𝑘𝑘,𝐶𝐶𝑘𝑘

∑𝑘𝑘=1𝐾𝐾 𝑊𝑊 𝐶𝐶𝑘𝑘 = 2∑𝑖𝑖∈𝐶𝐶𝑘𝑘 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘 2

 i.e. find the best centroids and the best cluster assignments

This joint optimization is very difficult to solve, however the two subproblems are simple:
 fix 𝐶𝐶𝑘𝑘, the best exact solution for 𝜇𝜇𝑘𝑘 = �̅�𝑥𝑘𝑘 is just the mean
 fix 𝜇𝜇𝑘𝑘, the best exact solution for 𝐶𝐶𝑘𝑘 is assigning the observation to the closest cluster

Therefore we do alternating optimization updating 𝐶𝐶𝑘𝑘 and 𝜇𝜇𝑘𝑘 in turn
This is a general strategy that works very well in many settings (e.g. GMMs)
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𝐾𝐾-means Clustering

ALGORITHM 12.2 𝐾𝐾-means clustering
1. randomly assign points to clusters
2. iterate until clusters stop changing

a) compute the centroid for each cluster
b) assign each observation to that 

cluster with the closest centroid

Iteratively minimize min
𝐶𝐶𝑘𝑘

2∑𝑖𝑖∈𝐶𝐶𝑘𝑘 𝑥𝑥𝑖𝑖 − �̅�𝑥𝑘𝑘 2 (*)

 In 2a) the centroids �̅�𝑥𝑘𝑘 are chosen to minimize (*)
 In 2b) the cluster assignments 𝐶𝐶𝑘𝑘 are chosen to minimize (*)

X 9



𝐾𝐾-means Clustering

ALGORITHM 12.2 𝐾𝐾-means clustering
1. randomly assign points to clusters
2. iterate until clusters stop changing

a) compute the centroid for each cluster
b) assign each observation to that 

cluster with the closest centroid

Iteratively minimize min
𝐶𝐶𝑘𝑘

2∑𝑖𝑖∈𝐶𝐶𝑘𝑘 𝑥𝑥𝑖𝑖 − �̅�𝑥𝑘𝑘 2 (*)

 In 2a) the centroids �̅�𝑥𝑘𝑘 are chosen to minimize (*)
 In 2b) the cluster assignments 𝐶𝐶𝑘𝑘 are chosen to minimize (*)

X 10



𝐾𝐾-means Clustering

ALGORITHM 12.2 𝐾𝐾-means clustering
1. randomly assign points to clusters
2. iterate until clusters stop changing

a) compute the centroid for each cluster
b) assign each observation to that 

cluster with the closest centroid

Iteratively minimize min
𝐶𝐶𝑘𝑘

2∑𝑖𝑖∈𝐶𝐶𝑘𝑘 𝑥𝑥𝑖𝑖 − �̅�𝑥𝑘𝑘 2 (*)

 In 2a) the centroids �̅�𝑥𝑘𝑘 are chosen to minimize (*)
 In 2b) the cluster assignments 𝐶𝐶𝑘𝑘 are chosen to minimize (*)

X 11



𝐾𝐾-means Clustering

ALGORITHM 12.2 𝐾𝐾-means clustering
1. randomly assign points to clusters
2. iterate until clusters stop changing

a) compute the centroid for each cluster
b) assign each observation to that 

cluster with the closest centroid

Iteratively minimize min
𝐶𝐶𝑘𝑘

2∑𝑖𝑖∈𝐶𝐶𝑘𝑘 𝑥𝑥𝑖𝑖 − �̅�𝑥𝑘𝑘 2 (*)

 In 2a) the centroids �̅�𝑥𝑘𝑘 are chosen to minimize (*)
 In 2b) the cluster assignments 𝐶𝐶𝑘𝑘 are chosen to minimize (*)

X 12



𝐾𝐾-means Clustering

ALGORITHM 12.2 𝐾𝐾-means clustering
1. randomly assign points to clusters
2. iterate until clusters stop changing

a) compute the centroid for each cluster
b) assign each observation to that 

cluster with the closest centroid

Iteratively minimize min
𝐶𝐶𝑘𝑘

2∑𝑖𝑖∈𝐶𝐶𝑘𝑘 𝑥𝑥𝑖𝑖 − �̅�𝑥𝑘𝑘 2 (*)

 In 2a) the centroids �̅�𝑥𝑘𝑘 are chosen to minimize (*)
 In 2b) the cluster assignments 𝐶𝐶𝑘𝑘 are chosen to minimize (*)

X 13
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𝐾𝐾-means initialization

𝐾𝐾-means clustering is greedy and thus only finds a local optimum
 thus it is important to run the algorithm multiple times each with different starting solutions
 here results for six random starting solutions, with K=3
 the smallest within-cluster variation is 235.8

In practice 𝐾𝐾-means++ is the most popular algorithm for choosing the initial centroids

(ISLR 12.4.1)X 15



𝐾𝐾-medoids

Limitation of 𝐾𝐾-means
 needs a metric space (when the centroids of the clusters are chosen)
 sensitive to outliers

𝐾𝐾-medoids clustering algorithm proceeds iteratively, just like 𝐾𝐾-means
 for a given cluster assignment 𝐶𝐶 find medoids
 given a set of medoids, minimize total error by assigning each observation to the closest medoid

Medoid: the observation that is closest (least dissimilar) to all other observations in the cluster
𝑖𝑖𝑘𝑘∗ = arg min

𝑖𝑖:𝐶𝐶𝑖𝑖=𝑘𝑘
�

𝑗𝑗:𝐶𝐶 𝑗𝑗 =𝑘𝑘

𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

 can also be used if only dissimilarity matrices are given (does not need the metric space)
 computation of a cluster center increases from 𝑁𝑁 to 𝑁𝑁2

(ESL 13.3.10)X 16



Elbow Method

Heuristic: look for the “elbow”, the inflection point of a curve to select a hyperparameter
 intuition: increasing the parameter (e.g. number of clusters, number of PC, etc.) always improves the fit 

but there are diminishing returns and we should stop early to prevent overfitting
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Hierarchical Clustering

Having to choose 𝐾𝐾 is a problem with 𝐾𝐾-means clustering

Hierarchical clustering does not have this requirement
 there are top-down and bottom-up versions
 top-down (divisive):

recursively bisect the dataset into clusters
 bottom-up (agglomerative):

start with singleton clusters and iteratively merge clusters

Both methods produce tree-like dendrograms

(ISLR 12.4.2)X

Simulated dataset with three classes 
depicted by color. The class labels are 
unknown to the clustering algorithm.
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Interpreting a Dendrogram

A tree-like structure where
 each leaf represents an observation
 each internal node is the root of a subtree that can be considered a cluster

 𝑦𝑦-coordinate shows the dissimilarity of the two clusters joined by a node
 ordering along 𝑥𝑥-axis is arbitrary (as long as it obeys the tree topology)

 often secondary criteria are used to select this ordering
 distance along the horizontal axis does not reflect similarity of observations

(ISLR 12.4.2)X

Dendogram for 
hierarchical clustering 
with complete linkage
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Interpreting a Dendrogram

A tree-like structure where
 each leaf represents an observation
 each internal node is the root of a subtree that can be considered a cluster

 𝑦𝑦-coordinate shows the dissimilarity of the two clusters joined by a node
 ordering along 𝑥𝑥-axis is arbitrary (as long as it obeys the tree topology)
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Horizontal cuts in the dendrogram result in disjoint clusters
 cut at 9 results in two clusters

(ISLR 12.4.2)X

Dendogram for 
hierarchical clustering 
with complete linkage
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Interpreting a Dendrogram

A tree-like structure where
 each leaf represents an observation
 each internal node is the root of a subtree that can be considered a cluster

 𝑦𝑦-coordinate shows the dissimilarity of the two clusters joined by a node
 ordering along 𝑥𝑥-axis is arbitrary (as long as it obeys the tree topology)

 often secondary criteria are used to select this ordering
 distance along the horizontal axis does not reflect similarity of observations

Horizontal cuts in the dendrogram result in disjoint clusters
 cut at 9 results in two clusters
 cut at 5 results in three clusters
 the lower the cut, the more clusters

(ISLR 12.4.2)X

Dendogram for 
hierarchical clustering 
with complete linkage
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Interpreting a Dendrogram

Distance along the horizontal axis does not reflect similarity of observations

X

dendrogramraw data

(ISLR 12.4.2) 22



Other Visualizations of Dendrograms

(ISLR 12.4.2)X

All leaf prongs are drawn at the zero y-coordinate
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Hierarchical Clustering

A dendrogram is not always appropriate for capturing the cluster structure of a data set
 some datasets do not have hierarchical structure
 in such case hierarchical clustering leads to worse results than 𝐾𝐾-means 

in terms of cluster coherence (the inverse of within-cluster variance)

(ISLR 12.4.2)X
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Agglomerative Clustering

Agglomerative clustering is superior to divisive clustering
 divisive clustering is at risk of forming wrong partitions early on that cannot be rectified
 agglomerative clustering repeatedly joins the two most similar (least dissimilar) clusters

ALGORITHM 12.3 Agglomerative Clustering
1. each observation is its own singleton cluster, compute all pairwise dissimilarities between observations
2. For 𝑖𝑖 = 𝑛𝑛,𝑛𝑛 − 1, … , 2 do:

a) fuse the two most similar clusters and set the height of the respective node in
the dendrogram as the dissimilarity between these two clusters

b) compute new pairwise dissimilarities between the clusters

Several notions of cluster dissimilarity are available
 all are based on the matrix of pairwise dissimilarities of the observations

(ISLR 12.4.2)X 25



Notions of Cluster Dissimilarity

Let (𝑑𝑑𝑖𝑖𝑗𝑗)𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛 be the pairwise dissimilarity matrix, often using the Euclidian distance  
and let 𝑑𝑑(𝐺𝐺,𝐻𝐻) be the dissimilarity between two clusters 𝐺𝐺 and 𝐻𝐻

Complete linkage (CL) 𝑑𝑑𝐶𝐶𝐶𝐶 𝐺𝐺,𝐻𝐻 = max
𝑖𝑖∈𝐺𝐺,𝑗𝑗∈𝐻𝐻

𝑑𝑑𝑖𝑖𝑗𝑗
 leads to compact clusters 

Single linkage (SL)   𝑑𝑑𝑆𝑆𝐶𝐶 𝐺𝐺,𝐻𝐻 = min
𝑖𝑖∈𝐺𝐺,𝑗𝑗∈𝐻𝐻

𝑑𝑑𝑖𝑖𝑗𝑗
 can lead to snake-like clusters

(Group) average linkage (GA) 𝑑𝑑𝐺𝐺𝐺𝐺 𝐺𝐺,𝐻𝐻 = 1
𝑁𝑁𝐺𝐺𝑁𝑁𝐻𝐻

∑𝑖𝑖∈𝐺𝐺 ∑𝑗𝑗∈𝐻𝐻 𝑑𝑑𝑖𝑖𝑗𝑗
 compromise between the previous two extremes

(ISLR 12.4.2)X 26



The Case Against Centroid Linkage
Let (𝑑𝑑𝑖𝑖𝑗𝑗)𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛 be the dissimilarity matrix, often using the Euclidian distance  
and let 𝑑𝑑(𝐺𝐺,𝐻𝐻) be the dissimilarity between two clusters 𝐺𝐺 and 𝐻𝐻

Centroid linkage (CTL) 𝑑𝑑𝐶𝐶𝑇𝑇𝐶𝐶 𝐺𝐺,𝐻𝐻 = �̅�𝐺 − �𝐻𝐻
2

 where �̅�𝐺 and �𝐻𝐻 are the centroids of the two clusters

Can result in undesired inversions

(ISLR 12.4.2)X

http://nlp.stanford.edu/IR-book/html/htmledition/centroid-clustering-1.html
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Notions of Cluster Dissimilarity

Diameter of a cluster G is defined as 𝐷𝐷𝐺𝐺 = max
𝑖𝑖,𝑗𝑗∈𝐺𝐺

𝑑𝑑𝑖𝑖𝑗𝑗
 CL clusters have small diameter
 SL cluster can have large diameter
 GA and CTL are in between

Group average dissimilarity is a sound estimate of mean distance
𝑑𝑑𝐺𝐺𝐺𝐺 𝐺𝐺,𝐻𝐻 = ∫ ∫ 𝑑𝑑 𝑥𝑥, 𝑥𝑥𝑘 𝑝𝑝𝐺𝐺 𝑥𝑥 𝑝𝑝𝐻𝐻 𝑥𝑥𝑘 𝑑𝑑𝑥𝑥𝑑𝑑𝑥𝑥𝑘

 the mean is taken over distances in a continuous data space

 as 𝑛𝑛 → ∞ we have that 𝑑𝑑𝐺𝐺𝐺𝐺 𝐺𝐺,𝐻𝐻 = 1
𝑁𝑁𝐺𝐺𝑁𝑁𝐻𝐻

∑𝑖𝑖∈𝐺𝐺 ∑𝑗𝑗∈𝐻𝐻 𝑑𝑑𝑖𝑖𝑗𝑗 approaches the equation above

 𝑑𝑑𝑆𝑆𝐶𝐶 𝐺𝐺,𝐻𝐻 approaches 0
 𝑑𝑑𝐶𝐶𝐶𝐶 𝐺𝐺,𝐻𝐻 approaches ∞

(ISLR 12.4.2)X 28



Example Agglomerative Hierarchical Clustering

(ISLR 12.4.2)X 29



Agglomerative Hierarchical Clustering Example

(ISLR 12.4.2)X

5  7
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Agglomerative Hierarchical Clustering Example

(ISLR 12.4.2)X
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Agglomerative Hierarchical Clustering Example

(ISLR 12.4.2)X
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Dendograms Vary with the Linkage Methods

Example of hierarchical clustering on a human tumor microarray data set

(ISLR 12.4.2)X 33



Choice of dissimilarity matrix

So far we used Euclidean distance, correlation-based distance is sometimes more appropriate
 similar observations have feature vectors with high correlation, even if the are far in Euclidean distance
 focuses on shapes of observation profiles rather than their magnitudes

(ISLR 12.4.2)X

 observations 1 and 3 are similar w.r.t. Euclidean 
distance but not w.r.t. correlation-based distance

 observations 1 and 2 are similar w.r.t. correlation-
based distance but not w.r.t. Euclidean distance

 observations 2 and 3 are not similar w.r.t. either

34



Example Shoppers Buying Profiles

When to use which distance matrix?
 goal: suggest items that shoppers are likely to want to buy
 feature values are quantity of each item bought
 here we are more interested in shape than in magnitude
 so correlation-based distance appears more appropriate

When should we standardize the data?
 shoppers may tend to buy more socks than computers
 without standardization socks will dominate the dissimilarity values, even though 

 computers might be the more interesting item for the retailer
 socks may be less informative about the customer than the number of computers bought 

 standardization gives each variable equal importance
 standardization is also good, if different variables are measured in different scales

(ISLR 12.4.2)X

#items bought for 8 customers
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Example Shoppers Buying Profiles

When to use which distance matrix?
 goal: suggest items that shoppers are likely to want to buy
 feature values are quantity of each item bought
 here we are more interested in shape than in magnitude
 so correlation-based distance appears more appropriate

When should we standardize the data?
 shoppers may tend to buy more socks than computers
 without standardization socks will dominate the dissimilarity values, even though 

 computers might be the more interesting item for the retailer
 socks may be less informative about the customer than the number of computers bought 

 standardization gives each variable equal importance
 standardization is also good, if different variables are measured in different scales

(ISLR 12.4.2)X

#items after standardization
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Example Shoppers Buying Profiles

When to use which distance matrix?
 goal: suggest items that shoppers are likely to want to buy
 feature values are quantity of each item bought
 here we are more interested in shape than in magnitude
 so correlation-based distance appears more appropriate

When should we standardize the data?
 shoppers may tend to buy more socks than computers
 without standardization socks will dominate the dissimilarity values, even though 

 computers might be the more interesting item for the retailer
 socks may be less informative about the customer than the number of computers bought 

 standardization gives each variable equal importance
 standardization is also good, if different variables are measured in different scales

(ISLR 12.4.2)X

#dollars spent
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Practical Issues in Clustering

Small decisions with big consequences
 should we standardize the data?
 for hierarchical clustering

 which dissimilarity matrix?
 which type of linkage?
 where to place the dendrogram cut?

 for K-means clustering
 how to set K?

 Validating the clusters
 difficult topic
 if we have labels for at least some observations we can assess class purity
 otherwise we can use the bootstrap to analyze the robustness of clusters

(ISLR 12.4.3)X 38



Clustering Both Features and Observations

X

Apply hierarchical separately on both the
 observartions using distance between features
 features using distance between observations

Visualize the entire dataset as a matrix where
rows and columns are sorted by the clusters

Can reveal interesting patterns in the data

Link to an interactive tool

clustering of the Iris dataset from clustergrammer
39

https://maayanlab.cloud/clustergrammer/


Different Variants of Clustering

Here, we have assigned each observation to exactly one cluster
 often, it is desirable to give a preference of observations to several clusters

 a probability that the observation belongs to the cluster
 there are “soft” versions of 𝐾𝐾-means based on this principle
 often clusters are not very robust to changes in the data

Sometimes it is desirable to assign observations to multiple clusters instead of a single one
 see also community detection in e.g. social networks

Be cautious and thoughtful when you cluster data!
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Summary

K-means 
 find a predefined number of clusters such that each observation is assigned to the closest centroid
 greedy iterative algorithm that alternatingly updates the clusters assignments and centroids 

Hierarchical clustering
 find a hierarchy of potential clusterings visually represented with a dendogram
 agglomerative clustering merges clusters in a bottom-up manner based on cluster dissimilarity metrics

Other Unsupervised Learning Methods
 dependency discovery
 pattern mining
 graph mining

X

 causal inference
 anomaly detection
 and many, many, many more…
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