

## **Problem 1** (T, Decision Trees).

1. Sketch a tree corresponding to the partition of the predictor space indicated in Fig. 1. The numbers inside the boxes indicate the mean of Y within each region.



Figure 1: Predictor Space over variables  $X_1$  and  $X_2$ 

2. Now look at the tree shown in Fig 2. Sketch what the partition space for this tree would look like.



Figure 2: Decision tree over variables  $X_1$  and  $X_2$ 



## Solution.

1. The predictor space results in the tree shown in Fig. 3.



Figure 3: Decision tree over variables  $X_1 \mbox{ and } X_2 \mbox{ for Part } 2$ 

2. The tree results in the predictor space shown in Fig. 4.



Figure 4: Predictor space variables  $X_1 \mbox{ and } X_2 \mbox{ for Part } 2$ 



## Problem 2 (T, Support Vector Machines).

- 1. We have seen that in p = 2 dimensions, a linear decision boundary takes the form  $\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$ . We now investigate a non-linear decision boundary.
  - (a) Sketch the curve  $X_1^2 2X_1 X_2 = 0$ .
  - (b) On your sketch, indicate the set of points for which  $X_1^2 2X_1 X_2 > 0$  and the set of points for which  $X_1^2 2X_1 X_2 \le 0$
  - (c) Suppose that a classifier assigns an observation to the blue class if  $X_1^2 2X_1 X_2 > 0$ , and to the red class otherwise. To what class are the following observations classified? (0,0), (-1,1), (2,2), (3,-8).
- 2. Consider the following optimization problem for Maximal Margin Classifier given in ISLP book Section 9.1.4. This classifier can be used to learn a linear decision boundary between two classes given that the classes are perfectly separable.

$$\text{maximize}_{\beta_0,\beta_1\dots,\beta_p,M}M\tag{2.1}$$

subject to 
$$\sum_{j=1}^{p} \beta_j^2 = 1,$$
 (2.2)

$$y_i \left(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}\right) \ge M \tag{2.3}$$

- (a) State whether the following statement is True or False: Constraint 2.2 is a constraint on the hyper-plane  $(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip} = 0)$ .
- (b) Describe the purpose of Constraints 2.2 and 2.3.
- 3. In many cases no separating hyperplane exists, and so there is no maximal margin classifier. In this case, the optimization problem (2.1 2.3) has no solution with M > 0. Explain how you can extend the concept of a separating hyperplane to develop a hyperplane that *almost* separates the classes.



Solution.

1. (a) The sketch is shown in Fig. 5.



Figure 5: Sketch of  $X_1^2 - 2X_1 - X_2 = 0$ 

- (b) All the points below the curve in Fig. 5 are  $\geq 0$ , the boundary of the curve is = 0. Everything above the curve is < 0. Specified in Fig. 5
- (c) We plug in the values of  $X_1$  and  $X_2$  into the equations and compare the answer to the classification condition
  - $(0,0) \rightarrow 0$ . This is not greater than 0, hence this gets assigned to **Red**
  - $(-1,1) \rightarrow 2$ . This is greater than 0, hence this gets assigned to **Blue**
  - $(2,2) \rightarrow -2$ . This is not greater than 0, hence this gets assigned to **Red**
  - $(3, -8) \rightarrow 11$ . This is greater than 0, hence this gets assigned to **Blue**
- 2. (a) False. If  $\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} = 0$  defines a hyperplane, so does  $k * (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} = 0)$  for a non-zero constant k. (Sec 9.1.4 ISLP).
  - (b) Constraints 2.2 and 2.3 ensure that each observation is on the correct side of the hyperplane and at least a distance M from the hyperplane (Read Sec 9.1.4 ISLP).
  - (c) By introducing slack variables  $\epsilon_i$  and a maximum budget C to allow for severity of the violations to the margin (and to the hyperplane) that we will tolerate. (Sec 9.2 ISLP).