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Problem 1 (Errors, Errors Everywhere) (10 points)

(a) Consider Figure 1. Which of the following three options correctly describes what is
happening in the �gure. (1 point)

i) As we increase �exibility, variance starts to increase. The bias decreases more
rapidly than the increase in variance, hence causing a downward trend until
Flexibility = 6. After that, the decrease in bias becomes smaller than the in-
crease in variance, resulting in the upward trend in the curve.

ii) As we increase �exibility, bias starts to increase. The variance decreases
more rapidly than the increase bias, hence causing a downward trend until
Flexibility = 6. After that, the decrease in variance becomes smaller than the
increase in bias, resulting in the upward trend in the curve.

iii) As we increase �exibility, both bias and variance decrease until Flexibility = 6.
After that, bias approaches zero, but variance starts to increase due to over
�tting, thereby causing the overall rising trend in the curve.
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Figure 1: Test MSE for an un unknown data set.

(b) Explain, for each of the three settings below, what will happen in terms of bias and
variance when we make the proposed change to the learning procedure. (3 points)

1) Changing the maximum depth of a decision tree from 10 to 2,

2) Replacing the LDA classi�er with the QDA classi�er,

3) When �tting a hexa-spline (i.e. polynomial spline of degree 6) enforcing conti-
nuity up to the 2nd, instead of up to the 5th derivative.
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(c) Consider that we have in�nite patience and training data. Is it in general possible
to achieve the perfect predictor that obtains 0 test error? Explain why (not). (1 point)

(d) Rank the following approaches from the one that over-estimates generalization error
least to the one that over-estimates generalization error most. Explain why your �rst
ranked method over-estimates less than the second ranked method, the second ranked
method less than the third ranked method, and so on. (3 points)

� validation set,

� leave-one-out cross-validation (LOOCV),

� k-fold cross-validation (CV),

� bagging.

(e) Explain in your own words what a con�dence interval is, what a prediction interval
is, and how these two are di�erent. (2 points)
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Solution.

(a) The correct answer is i). This is the bias-variance trade-o�. Typically increased model
complexity results in a decrease in bias and and increase in variance. At some point
the bias cannot be reduced any further since it cannot drop below 0. There is however
no �xed ceiling for the variance, which is why the prediction error increases again
after a certain �exibility.

(b) 1) Reducing the depth and in turn the number of splits results in decreased �exi-
bility, which means the bias goes up and variance down.

2) LDA assumes a common covariance matrix for all classes, whereas QDA as-
sumes that each class has its own covariance matrix. Hence, bias goes down and
variance up.

3) Enforcing continuity for fewer derivatives allows for a less smooth �t and hence
more �exibility, which results in bias going down and variance up.

(c) This is not possible due to irreducible error. In the general case the response is not
perfectly determined by the available and measured predictors that make up the data.
This can be the result of measuring inaccuracies and unmeasured (or immeasurable)
in�uences. Hence 0 test error cannot be achieved.

(d) 1) validation set: independent assessment, no bias on training data, variance only
dependent on size of validation set.

2) k-fold cross-validation (CV) � test on all data points once, so variance is rela-
tively low, but large overlap in training data causes bias.

3) k-bagging � random resampling version of CV, might test on all data points
once, but large expected overlap in training data causes higher bias.

4) leave-one-out cross-validation (LOOCV) � tests on all data points once, but
extreme overlap in training data causes higher bias than k-CV.

(e) Both con�dence and prediction intervals quantify uncertainty. A k% con�dence in-
terval is the range around the parameter value estimated on the sample, for which we
are k% con�dent that it contains the true parameter value for the entire population
(e.g., uncertainty about the average sales over all cities). That means if we compute
this interval for many sampled datasets we expect k% of those intervals to contain
the true value. Given in�nite samples the interval will converge to this true value.

A k% prediction interval is the range around the prediction for speci�c sample, for
which we are k% con�dent that it contains the true response (e.g., uncertainty about
sales in a particular city) . That means if we compute this interval for many datasets
we expect k% of those intervals to contain the true response for that sample. Predic-
tion intervals are wider than con�dence intervals because they take into account the
error in our estimate of the underlying function f(X), and the uncertainty introduced
due to the irreducible error, ϵ. Therefore the prediction interval cannot converge to
a single value even with in�nite samples size (ref. p. 82 ISLR).
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Problem 2 (Regression) (10 points)

Please assist a group of experts with analyzing the 5 data points they obtained through a
highly expensive experiment involving deep quantum entanglement and other buzzwords.
The key objective is to predict response variable Y given one or more predictors X.

Expert 1 is convinced that X1 is the key to predicting Y , and asks you to analyze the data
in Table 1 using linear regression.

X1 Y

2.3 15
2.7 14
3.8 16
3.9 15
4.6 24

Table 1: Observations for predictor variable X1 and target variable Y .

Recall that simple linear regression takes the form Y = β1X1 + β0, but that it is often

convenient to formulate it as Xβ = Y with β =

[
β1
β0

]
and X = [X1; 1].

(a) Using the following convenient approximation,

(
XT X

)−1
=

[
0.3 −1
−1 3.6

]
,

�nd β1 and β0. Explain the reasoning behind each step. (3 points)

(b) Expert 1 insists on using an unbiased linear estimator. Using the exact
(
XT X

)−1

under which conditions can you guarantee that the estimated β0 and β1 will have
the smallest Standard Error? (1 point)

Expert 2 does not like X1 at all, and instead claims that predictor X2 is linearly related
with the response variable. As evidence they show you the plot given in Figure 2 on page 5.

(c) State the common name of this plot, and describe what it is useful for. (1 point)

(d) Is Expert 2 correct in their claim? Explain why (not). (1 point)
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Expert 3 is more inclusive and considers it possible that not just X1, or X2, but rather
that any or all of X1, X2, . . . , X42 are useful for predicting Y . They kindly provide data
(not shown) over all 42 predictors for the same observations as given in Table 1.

(e) Describe why you can no longer use the same general approach to determine the
linear regression coe�cients as you could to help Expert 1. (1 point)

Finally, the head of research unit, Expert ∞, wants to know which from X1, . . . , X42 are
the most relevant predictors for Y and suggests that to �nd out you should use ridge
regression. An intern points out that this approach may have its pitfalls.

(f) Give one reason in favor of using lasso over ridge regression, and another reason why
to favor ridge regression over lasso. (2 points)

(g) Both ridge regression and the lasso require you to choose a value for λ. Describe how
in this case you would choose a suitable value for this parameter. (1 point)
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Figure 2: Plot given to you by Expert 2
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Solution.

(a) (i) Matrix inversion is not possible if the matrix does not have full column rank,
for example when there are more columns than rows in the matrix (i.e., more
features than observations). (1 P)

(ii) (XTX)
−1

positive de�nite and invertible since X has full column rank, which
means we can obtain a unique solution for β by formulating (1 P)

Xβ = Y

XTXβ = XTY

β = (XTX)
−1

XTY

(iii) We are given (XTX)
−1
. Thus, we �rst multiply by XT :

(XTX)−1XT

=

[
0.3 −1
−1 3.6

] [
2.3 2.7 3.8 3.9 4.6
1 1 1 1 1

]
=

[
−0.31 −0.19 0.14 0.17 0.38
1.3 0.9 −0.2 −0.3 −1

]
Now we multiply this matrix by Y to get:(

(XTX)−1XT
)
Y

=

[
−0.31 −0.19 0.14 0.17 0.38
1.3 0.9 −0.2 −0.3 −1

]
15
14
16
15
24


=

[
6.6
0.4

]
=

[
β1
β0

]
We allow for numerical errors in the �nal answer as long as the formulation is
correct.

(b) The estimates for β0 and β1 would have the smallest standard error if the relationship
between X1 and Y follows the Gauss-Markov assumptions, i.e., the error terms in
the additive linear model are random with expected value zero, homoscedastic and
uncorrelated with each other.

(c) The plot is called residual plot. It plots the residual error (the di�erence between
predicted and observed value) against the predicted values or predictor variable. We
can use this to check for correctness of our modelling assumptions and problems in
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the data: non-zero-mean residual error (indicates biased model class), trends in resid-
ual distribution (indicates non-linearity), non-equal distribution of residuals over X
(funnel or cone shape, heteroscedasticity of errors), outliers (can indicate de�ciency
in model or data), high-leverage points (inclusion/removal has large impact on re-
gression line).

(d) They are correct. The residual errors are zero-centered overX and have no discernible
trend, indicating the modelling assumptions are likely correct (for the given data).
There is no obvious heteroscedasticity and there are no apparent outliers or high-
leverage points.

(e) When p > n the matrix is no longer invertible since it is no longer of full rank,
meaning that the problem is underdetermined and has in�nitely many solutions.
Hence we cannot use the same technique as above to obtain estimates for β.

(f) Unlike Ridge Regression, Lasso drives coe�cients to 0, meaning that some predictors
drop out entirely. This makes it easier to interpret which predictors are informative
for Y . One the other hand Ridge Regression will not drive coe�cients of predictors
that are highly correlated to 0 and hence allow us to recover equally-good predictors.

(g) We can �nd a suitable value for λ through cross-validation. Since it is a continuous
variable we select a grid of possible λ values and compute the cross-validation error
for each. Since there are so few points, LOOCV in particular is a suitable choice for
the given data.
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Problem 3 (Classification) (10 points)

The research team now considers a classi�cation problem in which they want to predict
whether a cat in a box is alive (Y = 1) or not (Y = 0).

Expert 1 advocates they should use Decision Trees, as these permit interpretable models.

(a) When growing a decision tree, we iteratively split the n data points of a node t over
two successor nodes t′1 and t′2. Show that the classi�cation error of a decision tree
never increases when we do so. For simplicity, you may consider the class label to be
binary, i.e., p(c0) + p(c1) = 1. (2 points)

Expert 2 mumbles something about variance, and argues to use a Support Vector Machine
instead. Recall that the Support Vector Machine is de�ned as follows.

maximize
β0,...,βp, ξ1,...,ξN

M

subject to ∥β∥ = 1

ξi ≥ 0

yif(xi) ≥ M(1− ξi) for i = 1, . . . , N

N∑
i=1

ξi ≤ C

(b) Explain the purpose of variable C. Describe how bias and variance change when C
is increased. (2 points)

Expert ∞ says they should not waste time with tweaking parameters and instead imme-
diately go for the Bayes Classi�er because it is ideal. The intern looks panicked.

(c) Give the Bayes Classi�er. Explain in what sense it is ideal, and why we do not use
it in practice so often. (1 point)

Expert 3 remarks that cats have nine lives, and that the classi�cation problem hence
involves not two, but rather K = 10 classes. Let fk(x) denote the density function of X, i.e
Pr(X = x | Y = k), for the observation that comes from the kth class. Recall, according
to Bayes' Theorem,

Pr(Y = k | X = x) ∝ πk · fk(x) .

(d) What is πk in the above equation? How would you calculate πk for a given data set?
(1 point)
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(e) Assume that fk is provided. How can you now use Bayes' theorem to predict the
class label given the training data. (1 Point)

The intern �gured that x is univariate and always positive. Moreover, they strongly suspect
that it follows an exponential distribution E(λk) with distinct λk for each of the k classes,
where

E(x;λk) = λk · e−λkx .

(f) Derive the discriminant function. (2 points)

(g) Is the above derived discriminant function linear in terms of x? Why (not)? (1 point)

Solution.

(a) Assume that in node t there are n0 items of class c0 and n1 items of class c1. Further
assume n1 ≥ n0 so that n0 elements are misclassi�ed. After splitting, denote the
children by t0, t1 and assume that there are k0, k1 elements of classes c0, c1 respectively
in node t0. We have to distinguish three di�erent cases:

� k0 ≥ k1. Then in t0 we have k1 misclassi�ed items. Furthermore n1−k1 ≥ n0−k0
so that in t1 we misclassify n0 − k0 items. In total, n0 − k0 + k1 ≤ n0 elements
are misclassi�ed.

� k1 > k0. Therefore in t0 we have k0 misclassi�ed elements. Denote dn := n1 −
n0, dk := k1 − k0. Then we have to distinguish the following cases:

� dn ≥ dk: Then n1 − k1 ≥ n0 − k0 and thus in t1 n0 − k0 elements are
misclassi�ed, for a total of n0.

� dk > dn: In this case n1 − k1 elements are misclassi�ed in t1. The total is
therefore n1 − k1 + k0 = n1 − dk < n1 − dn = n0.

We note that the total number of misclassi�ed elements does not increase in any of
the cases.

(b) C speci�es the total amount of slack, that is the total amount of distance we permit all
points together to be within the margin or even on the wrong side of the hyperplane
(misclassi�ed training data). For a small C we seek narrow margins that a rarely
violated and therefore �t the data tightly, which means low bias but high variance.
If we allow no violations, by setting C = 0, we have the max-margin classi�er, which
only exists for linearly separable problems. Setting a larger C means we allow more
violations, resulting in increased bias but reduced variance. For limC→∞ the variance
approaches zero.
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(c) The Bayes Classi�er is given by argmaxk P (Y = k | X = x). It is ideal because it
has the lowest possible error rate of all classi�ers. However, we usually know neither
the true P (X | Y ) nor P (Y ), and hence have to make assumptions to approximate
these.

(d) πk is the prior probability P (Y = k) for observing an instance of class k. We can
approximate P (Y = k) by counting the instances of class k in our data and dividing
it by the total number of instances in our data.

(e) Given that P (Y = k | X = x) ∝ πk · fk(x). We plug-in our calculated πk and the
given fk(x) in to the equation of the Bayes Theorem. By taking argmaxk of the
product πk · fk(x) we can approximate the Bayes optimal decision.

(f) We derive the discriminant function argmaxk pk(x) by plugging in the given fk(x):

argmaxk pk(x) = argmaxk πkfk(x)

= argmaxk πk λke
−λkx

= argmaxk log(πk) + log
(
λke

−λkx
)

= argmaxk log(πk) + log(λk) + log
(
e−λkx

)
= argmaxk log(πk) + log(λk)− λkx

(g) This classi�er is linear in terms of x because x only appears in the linear expression
λkx.
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Problem 4 (Beyond Linear Regression) (10 points)

The cat escaped from the box. The research team is now investigating how the size of a
pet (X1) relates to how loud it is (Y ) as measured in decibel. Prior analysis shows that
this relationship is non-linear.

Expert 1 suggests to model the relationship between X1 and Y using regression splines, as
these allow us to easily check and/or control the degrees of freedom of the model.

(a) How many degrees of freedom does a regression spline have if we use polynomials
of degree d = 4, have K = 10 knots, and require the spline to be continuous at the
knots, but do not care about the continuity of the derivatives. Explain your answer. (1 point)

Expert∞ proclaims that to improve generalization they should use unnatural cubic splines.
These are plain cubic splines with polynomials of degree d = 10 at the boundaries, where
at each knot we enforce continuity up to and including the second derivative.

(b) How many degrees of freedom has an unnatural cubic spline with K = 10 knots? (1 point)

(c) Will the unnatural cubic regression spline achieve better generalization than a regular
cubic spline? Explain why (not)? (2 points)

Expert 2 suggests they should use local regression using a uniform weight function (kernel)
over the k points closest to the query point x0.

(d) In the worst case, how many di�erent local models would we have to �t if we have n
training points and are asked to make m independent predictions? (2 points)

Expert 3 tells the intern that PCA is just linear regression, and that PLS and gradient
boosting have nothing to do with one another. The intern looks doubtful.

(e) Suppose we are given a zero centered dataset over X and Y with Var(X) = Var(Y ) =
1. We �t a linear regression model from X to Y to obtain β0 and β1, respectively
perform PCA over X and Y to obtain the �rst principle component Z1. When we
now compare the directions of the vector (1, β1) to that of Z1, we see that these
directions are similar yet di�erent. Explain why. (2 points)

(f) Explain how PLS and gradient boosted regression trees are similar. What is an
advantage of PLS over boosting and advantage of boosting over PLS. (2 points)
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Solution.

(a) Since there are K = 10 knots we have K+1 = 11 regions. The polynomials we �t are
of degree d = 4, which means they have d + 1 = 5 parameters each. This makes for
(K + 1)(d + 1) = 55 parameters in total. By requiring the splines to be continuous
we introduce one constraint per knot, for a total of K = 10 constraints. Hence the
degree of freedoms are

(K + 1)(d+ 1)−K = 55− 10 = 45

(b) A plain regression spline with polynomials of degree d has d + K + 1 degrees of
freedom. We replace the two cubic splines at the boundaries with polynomials of
degree d = 10. This means we subtract the domains of freedom of two cubic splines,
2(3 + 1), and instead add those of two degree 10 polynomials, 2(10 + 1), hence the
degrees of freedom are

3 +K + 1− 2(3 + 1) + 2(10 + 1) = 28

(c) Splines already have high variance at the boundaries. By introducing more degrees of
freedom, the variance will only increase further, and hence worsen the generalization.
Natural splines, in order to address this variance, reduce the degrees of freedom at
the boundaries by enforcing linearity.

(d) Assume x is univariate and ∀i xi < xi+1. Then x1, . . . , xk is the �rst possible set
of closest neighbors, x2, . . . , xk+1 the second one etc., until the last possible set
xn−k+1, . . . , xn. This makes for a total of n − k + 1 di�erent possible sets of clos-
est neighbors to train the local model on.

Therefore, if m <= n − k + 1 we need to �t at most m local models, one for each
prediction (fewer if some share a set of closest points). If m > n−k+1 then we need
n− k + 1 models since some predictions are based on the same local models.

(e) When maximizing the variance we minimize the sum of squared distances between the
projected datapoint and the original datapoint, while when �tting a linear function
we minimize the squared distance between the predicted datapoint and the original
value.

(f) Boosting works by �tting a decision tree on the original data, computing the residual
of this tree and training the next tree on that residual. This process is repeated B
times.

PLS works by �nding a �rst direction, computing the residual (the information not
explained by the �st PLS direction) and computing the next direction based o� that
residual. This process is repeated M times.

Both methods iteratively improve performance by working o� of the error remaining
after "using" all previous predictors.

PLS can capture linear relationships while boosting can only approximate a linear
relationship by a �ne grained step function, but on the other hand this means boosting
also works for non-linear relationships.
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For Boosting we have to choose the number of splits per tree (d), the number of
trees overall (B) and the shrinkage parameter (λ), whereas in PLS we only have
pick the number of dimensions. Since decision trees are the basis of boosting, and its
original version was applied to binary classi�cation, it lends itself well for usage with
categorical values.
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Problem 5 (Unsupervised) (10 points)

Having tried and solved all possible supervised machine learning problems in their �eld, the
experts now want to gain insight from their data and hence turn to unsupervised learning.

Expert 1 considers hierarchical clustering. Consider the following dendrogram.
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(a) What is the clustering at k = 3? (1 point)

(b) Expert 1 expects that the data has 3 real clusters, and a number of possible outliers.
What are the clusters and outliers? Explain your choice. (2 points)

(c) Explain the di�erence between single-link and complete-link hierarchical agglomera-
tive clustering. Which weaknesses of single-link does complete-link address? (2 points)

Expert 2 does not like hierarchies, and hence instead considers k-means clustering.

(d) Show why the k-means algorithm always converges. (2 point)

(e) Is k-means is sensitive to outliers in the data? Explain why (not). (1 point)
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Expert ∞ likes looking at things. While Stochastic Neighborhood Embedding (SNE) has
a neat formal de�nition, its results tend to su�er from the `crowding' problem. The intern
suggests that changing the distribution in the lower dimensional space might solve that.
Expert ∞ tells the intern to use the probability density function sketched in Figure 3.
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Figure 3: Probability Density Functions

(f) Consider Figure 3. Explain how and why the embeddings SNE discovers would change
if we replace the Gaussian (Normal) distribution in the lower dimensional (map)
space, with the sketched function. (2 points)

Solution.

1. We obtain cluster A {11− 17}, Cluster B {19− 20}, and Cluster C {1− 10, 18}.

2. We obtain cluster A {11−13}, Cluster B {14−17}, and Cluster C {1−10} with the
outliers {18, 19, 20}. We choose the outliers such that they have the largest distance
from other points, and pick the cluster such that we achieve the smallest intra-cluster
distance (approximately 3 for A, 5 for B, and 9 for C). The alternative clustering
{11− 17}, {1, 3− 4, 6− 7}, {2, 5, 8− 10} would have distances of approximately 28,
6, and 6.

3. Single-link measures the distance between two clusters as the shortest distance be-
tween any pair of points drawn from the two clusters. This tends to create elongated
clusters.

Complete-link measures the distance between two clusters as the maximal distance
between any pair of points drawn from the two clusters. This tends to create spherical
clusters and breaks large clusters.

Complete-link is less susceptible to noise than single-link.
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4. Note that we have fewer than nk possible clusters (for n observations and k clusters),
that is we have a �nite search space. Hence we can prove convergence by showing
that subsequent states can form no cycles:

In any iteration of the algorithm we have either:

� The cluster assignment does not change and therefore the algorithm terminates.

� The cluster assignment does change. Reassigning always decreases the error
(see above), hence the new assignment cannot be one that has been visited in
a previous iteration.

Since the algorithm either terminates or visits a previously unseen assignment it is
guaranteed to converge after at most nk iterations.

5. The k-means algorithm is rather sensitive to outliers, due to the use of the mean as
a centroid computation statistic, which is inherently sensitive to outliers. The e�ect
may range from over-/under-estimating the true cluster center to selecting the outlier
as a single cluster.

6. The steeper slopes near the peak mean that points that are close in the original
space but far apart in the embedded space will be strongly penalized, whereas the
lighter tails mean that points that are far away in the original space do not incur
much penalization if they are close together in the embedded space. As a result, local
structure in the original space will be emphasized in the embedded space: clusters will
be more compact within, and further away from each other, than for the Gaussian
kernel.
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