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Another look at (Logistic) Regression

The model is 𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝
 equivalently 𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽𝑇𝑇𝑋𝑋 where 𝛽𝛽 and 𝑋𝑋 are now vectors
 equivalently 𝑌𝑌 = 𝛽𝛽𝑇𝑇𝑋𝑋 for an 𝑋𝑋 where we added a constant feature 𝑋𝑋0 = 1

For binary classification we apply the sigmoid function 𝜎𝜎
 𝑌𝑌 = 𝜎𝜎 𝛽𝛽0 + 𝛽𝛽𝑇𝑇𝑋𝑋
 𝜎𝜎 squishes the output between 0 and 1
 𝑌𝑌 can be interpreted as the probability of class 1

We can only model linear functions!
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Introducing Non-linearity

General recipe: transform 𝑋𝑋 into some other space 𝑍𝑍 and fit a linear model on 𝑍𝑍

Polynomial regression: add higher-order terms
 𝑋𝑋1, X12,𝑋𝑋2, X22, … ,𝑋𝑋𝑝𝑝, X𝑝𝑝2

 rename 𝑍𝑍1 = 𝑋𝑋1, 𝑍𝑍2 = X12, 𝑍𝑍3 = 𝑋𝑋2, … ,𝑍𝑍𝑝𝑝′ = 𝑋𝑋𝑝𝑝2

 we can have interaction terms, e.g. 𝑍𝑍𝑖𝑖 = 𝑋𝑋2 ⋅ 𝑋𝑋5

SVM: apply a kernel 𝐾𝐾 ⋅,⋅ equivalent to a transformation Φ
 𝑍𝑍 = Φ(𝑋𝑋) is now the RKHS (that we called Ψ in previous lecture)

These transformations are fixed. Why don’t we learn them?
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Neural Networks

Single hidden layer neural network
 aka feed-forward NN, aka multilayer perceptron (MLP)
 represented by a network diagram

Works for regression and classification
 regression: typically 𝐾𝐾 = 1 but we can

handle multiple quantitative responses
 𝐾𝐾-class classification: 𝐾𝐾 output units, where

𝑌𝑌𝑘𝑘 models the probability of class 𝑘𝑘

(ESL 11.3)XIII 4
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Neural Networks

The derived (hidden) features are defined as
𝑍𝑍𝑚𝑚 = 𝜎𝜎 𝛼𝛼0𝑚𝑚 + 𝛼𝛼𝑚𝑚𝑇𝑇 𝑋𝑋 , 𝑚𝑚 = 1, … ,𝑀𝑀

The output features are defined as
𝑇𝑇𝑘𝑘 = 𝛽𝛽0𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑇𝑇𝑍𝑍, 𝑘𝑘 = 1, … ,𝐾𝐾
𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑘𝑘(𝑋𝑋) = 𝑔𝑔𝑘𝑘 𝑇𝑇 , 𝑘𝑘 = 1, … ,𝐾𝐾

The output transformation 𝑔𝑔𝑘𝑘(𝑇𝑇)
 regression 𝑔𝑔𝑘𝑘 𝑇𝑇 = 𝑇𝑇𝑘𝑘, no transformation

 classification 𝑔𝑔𝑘𝑘 𝑇𝑇 = 𝑒𝑒𝑇𝑇𝑘𝑘
∑𝑙𝑙=1
𝐾𝐾 𝑒𝑒𝑇𝑇𝑙𝑙

, the softmax
ensures 𝑌𝑌𝑘𝑘 are positive and sum to 1

(ESL 11.3)XIII 5
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The activation function 𝜎𝜎

Why do we need an activation function?
 ignoring the bias we have 𝑍𝑍𝑚𝑚 = 𝜎𝜎 𝛼𝛼𝑚𝑚𝑇𝑇 𝑋𝑋 and 𝑇𝑇𝑘𝑘 = 𝛽𝛽𝑘𝑘𝑇𝑇𝑍𝑍

If 𝜎𝜎 is the identity function then
 𝑇𝑇𝑘𝑘 = 𝛽𝛽𝑘𝑘𝑇𝑇𝑍𝑍 = 𝛽𝛽𝑘𝑘𝑇𝑇 𝛼𝛼𝑚𝑚𝑇𝑇 𝑋𝑋
 equivalent to 𝑇𝑇𝑘𝑘 = �𝛽𝛽𝑍𝑍 for some �𝛽𝛽
 the final model is still linear

A useful activation function is the sigmoid 𝜎𝜎 𝑣𝑣 = 1
1+𝑒𝑒−𝑣𝑣

 each hidden node projects the data along a specific direction 
𝛼𝛼𝑚𝑚 and applies a sigmoid along this direction 

 𝜎𝜎(𝑠𝑠 𝑣𝑣 − 𝑣𝑣0 ) shifts the inflection point from 0 to 𝑣𝑣0 and scales the function by a factor 𝑠𝑠

(ESL 11.3)XIII 6
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Activation functions

XIII 7



Naming of Neural Networks

Naming from (loose) analogy to neurons in the brain 
 dendrites receive analog input (post-synaptic potentials)
 the soma integrates these potentials
 if result exceeds a threshold it fires a sequence of spikes

(action potentials) down the axon
 firing frequency rises with the total potential
 arrival of a spike at the axon terminal causes 

neurotransmitter to be released into the synaptic cleft.
 higher frequency of spikes = more transmitter released

Originally the activation function 𝜎𝜎 was a step function realizing a firing threshold
 was not appropriate for optimization

(ESL 11.3)XIII 8



Fitting a Neural Network

The unknown parameters of a neural net (NN) are the sets of weights 𝜃𝜃
 𝛼𝛼0𝑚𝑚,𝛼𝛼𝑚𝑚;𝑚𝑚 = 1,2, … ,𝑀𝑀 𝑀𝑀 𝑝𝑝 + 1
 𝛽𝛽0𝑘𝑘,𝛽𝛽𝑘𝑘;𝑘𝑘 = 1,2, … ,𝐾𝐾 𝐾𝐾(𝑀𝑀 + 1)

Regression: typically use sum of squares as error measure 𝑅𝑅 𝜃𝜃 = ∑𝑖𝑖=1𝑁𝑁 ∑𝑘𝑘=1𝐾𝐾 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑘𝑘 𝑥𝑥𝑖𝑖
2

Classification: typically use cross entropy 𝑅𝑅 𝜃𝜃 = −∑𝑖𝑖=1𝑁𝑁 ∑𝑘𝑘=1𝐾𝐾 𝑦𝑦𝑖𝑖𝑖𝑖 log 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)
 with the final classifier as arg max

𝑘𝑘
𝑓𝑓𝑘𝑘(𝑥𝑥)

With softmax and cross entropy a NN equals a linear logistic regression model in its hidden 
units, but the overall model is non-linear since 𝑍𝑍 is a non-linear transformations of 𝑋𝑋

(ESL 11.4)XIII 9



The Sound of Machine Learning

(credits @MaartenvSmeden)IV

that is just

logistic regression…






Fitting a Neural Network

All parameters are estimated by maximum likelihood

The global minimizer is likely to overfit the data, thus we need regularization
 through a penalty term or
 by early stopping

Training by gradient descent is now called back propagation
 detailed for square-error loss in the next slide

Recall the chain rule: for 𝑓𝑓 𝑥𝑥 = 𝑑𝑑 𝑐𝑐(𝑏𝑏(𝑎𝑎(𝑥𝑥))) we have:
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝑑𝑑
𝜕𝜕𝑐𝑐

𝜕𝜕𝑐𝑐
𝜕𝜕𝑏𝑏

𝜕𝜕𝑏𝑏
𝜕𝜕𝑎𝑎

𝜕𝜕𝑎𝑎
𝜕𝜕𝑥𝑥

(ESL 11.4)XIII 11



Fitting a Neural Network

The model definition:
 𝑍𝑍𝑚𝑚 = 𝜎𝜎(𝛼𝛼0𝑚𝑚+𝛼𝛼𝑚𝑚𝑇𝑇 𝑋𝑋), 𝑚𝑚 = 1, . . ,𝑀𝑀
 𝑇𝑇𝑘𝑘 = 𝛽𝛽0𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑇𝑇𝑍𝑍, and 𝑌𝑌𝑘𝑘 = 𝑓𝑓𝑘𝑘 𝑋𝑋 = 𝑔𝑔𝑘𝑘 𝑇𝑇 , 𝑘𝑘 = 1, … ,𝐾𝐾

So we have 𝑧𝑧𝑚𝑚𝑚𝑚 = 𝜎𝜎 𝛼𝛼0𝑚𝑚 + 𝛼𝛼𝑚𝑚𝑇𝑇 𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑖𝑖 = 𝑧𝑧1𝑖𝑖 , 𝑧𝑧2𝑖𝑖 , … , 𝑧𝑧𝑀𝑀𝑀𝑀 , 𝑖𝑖 = 1, … ,𝑁𝑁

The error is 𝑅𝑅 𝜃𝜃 = ∑𝑖𝑖=1𝑁𝑁 𝑅𝑅𝑖𝑖 = ∑𝑖𝑖=1𝑁𝑁 ∑𝑘𝑘=1𝐾𝐾 𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑘𝑘 𝑥𝑥𝑖𝑖
2with the derivative as

𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝛽𝛽𝑘𝑘𝑘𝑘

= −2 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑘𝑘 𝑥𝑥𝑖𝑖 𝑔𝑔𝑘𝑘′ 𝛽𝛽𝑘𝑘𝑇𝑇𝑧𝑧𝑖𝑖 𝑧𝑧𝑚𝑚𝑖𝑖

𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝛼𝛼𝑚𝑚𝑚𝑚

= −�
𝑘𝑘=1

𝐾𝐾

2 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑘𝑘 𝑥𝑥𝑖𝑖 𝑔𝑔𝑘𝑘′ 𝛽𝛽𝑘𝑘𝑇𝑇𝑧𝑧𝑖𝑖 𝛽𝛽𝑘𝑘𝑘𝑘𝜎𝜎′ 𝛼𝛼𝑚𝑚𝑇𝑇 𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖

(Rumelhart et al, 1986)XIII 12



Fitting a Neural Network


𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝛽𝛽𝑘𝑘𝑘𝑘

= −2 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑘𝑘 𝑥𝑥𝑖𝑖 𝑔𝑔𝑘𝑘′ 𝛽𝛽𝑘𝑘𝑇𝑇𝑧𝑧𝑖𝑖 𝑧𝑧𝑚𝑚𝑖𝑖


𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝛼𝛼𝑚𝑚𝑚𝑚

= −∑𝑘𝑘=1𝐾𝐾 2 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑘𝑘 𝑥𝑥𝑖𝑖 𝑔𝑔𝑘𝑘′ 𝛽𝛽𝑘𝑘𝑇𝑇𝑧𝑧𝑖𝑖 𝛽𝛽𝑘𝑘𝑘𝑘𝜎𝜎′ 𝛼𝛼𝑚𝑚𝑇𝑇 𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖

We use the gradients in the following gradient descent formula where 𝛾𝛾𝑟𝑟 is the learning rate
𝛽𝛽𝑘𝑘𝑘𝑘

(𝑟𝑟+1) = 𝛽𝛽𝑘𝑘𝑘𝑘
(𝑟𝑟) − 𝛾𝛾𝑟𝑟 ∑𝑖𝑖=1𝑁𝑁 𝜕𝜕𝑅𝑅𝑖𝑖/𝜕𝜕𝛽𝛽𝑘𝑘𝑘𝑘

(𝑟𝑟)

𝛼𝛼𝑚𝑚𝑚𝑚
(𝑟𝑟+1) = 𝛼𝛼𝑚𝑚𝑚𝑚

(𝑟𝑟) − 𝛾𝛾𝑟𝑟 ∑𝑖𝑖=1𝑁𝑁 𝜕𝜕𝑅𝑅𝑖𝑖/𝜕𝜕𝛼𝛼𝑚𝑚𝑚𝑚
(𝑟𝑟)

By (∗) the derivatives have the simplified form 𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝛽𝛽𝑘𝑘𝑘𝑘

= 𝛿𝛿𝑘𝑘𝑘𝑘𝑧𝑧𝑚𝑚𝑚𝑚 and 𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝛼𝛼𝑚𝑚𝑚𝑚

= 𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖𝑖𝑖

where 𝛿𝛿𝑘𝑘𝑘𝑘 and 𝑠𝑠𝑚𝑚𝑚𝑚 are the current  error terms and satisfy 𝑠𝑠𝑚𝑚𝑚𝑚 = 𝜎𝜎′ 𝛼𝛼𝑚𝑚𝑇𝑇 𝑥𝑥𝑖𝑖 ∑𝑘𝑘=1𝐾𝐾 𝛽𝛽𝑘𝑘𝑘𝑘𝛿𝛿𝑘𝑘𝑘𝑘

(Rumelhart et al, 1986)XIII 13
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(∗)

back propagation equations



Fitting a Neural Network
The gradient descent updates are
 𝛽𝛽𝑘𝑘𝑘𝑘

(𝑟𝑟+1) = 𝛽𝛽𝑘𝑘𝑘𝑘
(𝑟𝑟) − 𝛾𝛾𝑟𝑟 ∑𝑖𝑖=1𝑁𝑁 𝜕𝜕𝑅𝑅𝑖𝑖/𝜕𝜕𝛽𝛽𝑘𝑘𝑘𝑘

(𝑟𝑟) and 𝛼𝛼𝑚𝑚𝑚𝑚
(𝑟𝑟+1) = 𝛼𝛼𝑚𝑚𝑚𝑚

(𝑟𝑟) − 𝛾𝛾𝑟𝑟 ∑𝑖𝑖=1𝑁𝑁 𝜕𝜕𝑅𝑅𝑖𝑖/𝜕𝜕𝛼𝛼𝑚𝑚𝑚𝑚
(𝑟𝑟)

 with derivatives 𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝛽𝛽𝑘𝑘𝑘𝑘

= 𝛿𝛿𝑘𝑘𝑘𝑘𝑧𝑧𝑚𝑚𝑚𝑚 and 𝜕𝜕𝑅𝑅𝑖𝑖
𝜕𝜕𝛼𝛼𝑚𝑚𝑚𝑚

= 𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖𝑖𝑖

The updates in (∗∗) can be done by a two-pass algorithm
1. Forward pass
 fix current weights and compute the predicted output values 𝑌𝑌𝑘𝑘
2. Backward pass
 compute the errors 𝛿𝛿𝑘𝑘𝑘𝑘
 “back propagate” the errors to obtain the values 𝑠𝑠𝑚𝑚𝑚𝑚
 use these values to compute the gradients and do the update (∗∗)

Training with the cross entropy error is analogous

(Rumelhart et al, 1986)XIII 14

(∗∗)



Remarks on Backpropagation

Backpropagation is local in nature 
 every weight depends only on the weights of neurons connected to the respective neuron 
 the algorithm hence allows for trivial parallelization

We discussed (full) batch learning, where all training data is processed simultaneously
 there is also an online version where training data is fed continually in a repeating cycle 
 great for very large training sets
 stochastic gradient descent on mini-batches of data

 larger batch ⇒ less noise in the gradient estimate
 but some noise can be good, e.g. act as a regularizer and help us escape bad local minima

(Robbins & Munro, 1951)  (ESL 11.4)XIII 15



Remarks on Backpropagation

Learning rate 𝛾𝛾𝑟𝑟 usually a constant
 can be optimized by a line search along the direction of the gradient
 should decrease to 0 in online setting
 variant of stochastic approximation, ensures convergence if 𝛾𝛾𝑟𝑟 → 0, ∑𝑟𝑟 𝛾𝛾𝑟𝑟 = ∞, ∑𝑟𝑟 𝛾𝛾𝑟𝑟2 < ∞
 first-order methods can be very slow, sadly, Newton’s method is not appropriate since the second 

derivative of 𝑅𝑅 can be very large

Backpropagation is not just the chain rule, with automatic differentiation (Pytorch, Tensorflow)
 it is a particularly efficient strategy for computing the chain rule
 evaluating ∇𝑓𝑓(𝑥𝑥) provably as fast as evaluating 𝑓𝑓(𝑥𝑥)
 code for ∇𝑓𝑓(𝑥𝑥) can be automatically derived even if we have control flow structures like loops
 it operates on a more general family of functions: programs which have intermediate variables

(Robbins & Munro, 1951)  (ESL 11.4)XIII 16



Issues with Training
Starting values – initialization of the parameters
 large initial weights usually lead to poor solutions 
 starting with 0 for all weights never changes anything
 if weights are near-zero, the operative part of the sigmoid is near-linear and such is the model
 usually chosen randomly near-zero (e.g. Xavier Glorot)
 model hence starts out as linear, and chooses direction where non-linearity is needed

Overfitting
 early stopping amounts to shrinking the model towards a more linear solution
 weight decay is analogue to ridge regression, adds a penalty to the error

𝑅𝑅 𝜃𝜃 + 𝜆𝜆𝜆𝜆 𝜃𝜃 with 𝐽𝐽 𝜃𝜃 = ∑𝑘𝑘𝑘𝑘𝛽𝛽𝑘𝑘𝑘𝑘2 + ∑𝑚𝑚𝑚𝑚 𝛼𝛼𝑚𝑚𝑚𝑚2

 cross validation used to choose 𝜆𝜆 respectively adds 2𝛽𝛽𝑘𝑘𝑘𝑘 and 2𝛼𝛼𝑚𝑚𝑚𝑚 to the gradient

(ESL 11.5)XIII 17



The Effect of Weight Decay

 alternative weight elimination penalty 𝐽𝐽 𝜃𝜃 = ∑𝑘𝑘𝑘𝑘
𝛽𝛽𝑘𝑘𝑘𝑘
2

1+𝛽𝛽𝑘𝑘𝑘𝑘
2 + ∑𝑚𝑚𝑚𝑚

𝛼𝛼𝑚𝑚𝑚𝑚
2

1+𝛼𝛼𝑚𝑚𝑚𝑚
2 shrinks smaller weights more

(ESL 11.5)XIII 18



Issues with Training

Scaling the inputs
 determines the scaling of the weights in the bottom layer(s)
 can have a large effect on the outcome

Best to normalize the inputs to mean 0 and standard deviation 1
 treats all inputs equally in regularization
 allows meaningful ranges for initial weights, e.g. uniform [−0.7, +0.7]

(ESL 11.5)XIII 19



Issues with Training

Number of hidden units
 better too many than too few
 with too few, not enough flexibility for capturing the non-linear effect
 with too many, the superfluous ones can be shrunk during regularization

Typically 50 to 100 hidden units
 increasing with number of inputs and training instances
 need not use CV to find the optimal number if you use CV to tune 𝜆𝜆
 choice guided partly by background knowledge

Modern NNs are heavily overparametrized

(ESL 11.5)XIII 20



Issues with Training

Number of hidden layers
 allows hierarchical extraction of features at different levels of resolution
 choice guided partly by background knowledge

𝑅𝑅(𝜃𝜃) potentially possesses very many minima
 thus need to try several starting configurations
 good idea to combine models by averaging their output
 bagging is another possibility (changes training data instead of starting values)

(ESL 11.5)XIII 21



Example Sigmoids and Radials

Generate data from two additive error models
 sum of sigmoids: 𝑌𝑌 = 𝜎𝜎 𝑎𝑎1𝑇𝑇𝑋𝑋 + 𝜎𝜎 𝑎𝑎2𝑇𝑇𝑋𝑋 + 𝜖𝜖1 with 𝑎𝑎1 = 3,3 ,𝑎𝑎2 = (3,−3)

 radial: 𝑌𝑌 = ∏𝑚𝑚=1
10 𝜙𝜙 𝑋𝑋𝑚𝑚 + 𝜖𝜖2 with 𝜙𝜙 𝑡𝑡 = 1

2𝜋𝜋
𝑒𝑒− ⁄𝑡𝑡2 2

 𝑋𝑋 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝) with each 𝑋𝑋𝑖𝑖 being a standard Gaussian variable
 𝜖𝜖𝑖𝑖 are Gaussian errors, variance chosen such that S/N ratio = 4

Signal to Noise (S/N) ratio 𝑉𝑉𝑉𝑉𝑉𝑉 𝐸𝐸 𝑌𝑌 𝑋𝑋
𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌−𝐸𝐸 𝑌𝑌 𝑋𝑋 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑓𝑓 𝑥𝑥

𝑉𝑉𝑉𝑉𝑉𝑉 𝜖𝜖

 100 training samples and 10,000 test samples

Fit neural network with weight decay (𝜆𝜆 = 0.0005) and various numbers of hidden units
 record average test error 𝐸𝐸test 𝑌𝑌 − 𝑓𝑓 𝑋𝑋

2 over 10 random initializations

(ESL 11.6)XIII 22



Example Sigmoids and Radials

 radial is the “worst” case since no preferred directions (each hidden neuron represents a direction), and 
worse than the best constant model (which has relative error 5 for a S/N ratio of 4)

(ESL 11.6)XIII 23
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Example Sigmoids – Effect of Weight Decay

Weight decay helps to reduce the test error

(ESL 11.6)XIII 24



Example Sigmoids – Determining 𝜆𝜆

𝜆𝜆 = 0.1 is about optimal

(ESL 11.6)XIII 25



Example Sigmoids and Radials

We need to select
 the number of hidden units 𝑀𝑀
 the weight decay parameter 𝜆𝜆

One possibility
 fix either parameter at the point of the least constrained model (to allow flexibility)
 choose the other parameter with CV
 here least constrained is 𝜆𝜆 = 0, 𝑀𝑀 = 10
 for our example optimizing 𝜆𝜆 was more effective than optimizing 𝑀𝑀

Another possibility: try different configurations of (𝜆𝜆,𝑀𝑀)

(ESL 11.6)XIII 26



Note on Hyperparameter Tuning

Another possibility: try different combinations of (𝜆𝜆,𝑀𝑀)
Careful: grid search is usually much worse than random search

(Bergstra and Bengio, “Random Search for Hyper-Parameter Optimization”)XIII 27
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Example Zip Code Data

Data is 16x16 8-bit grayscale images
 256 inputs to the neural net, one per pixel
 320 digits in training set, 160 digits in test set

A black-box neural net is not appropriate
 pixel representation lacks invariances, e.g. to small rotations
 early-day neural nets hence yielded low accuracy (4.5%)
 here we report on breakthrough effort to overcome this

Sigmoidal output units
 fit with square error function
 online training
 training error 0% (more parameters than observations)

(ESL 11.7, Le Cun 1989)XIII 28



Example Zip Code Data

Five classification networks
 Net-1: no hidden layers, equivalent to logistic regression

(ESL 11.7, Le Cun 1989)XIII 29
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Example Zip Code Data

Five classification networks
 Net-1: no hidden layers, equivalent to logistic regression
 Net-2: 1 layer, 12 units, fully connected

(ESL 11.7, Le Cun 1989)XIII 30



Example Zip Code Data

Five classification networks
 Net-1: no hidden layers, equivalent to logistic regression
 Net-2: 1 layer, 12 units, fully connected
 Net-3: 2 layers locally connected

 local connectivity: receptive field of adjacent units in 
the first (second) hidden layer are two (one) units apart

(ESL 11.7, Le Cun 1989)XIII 31
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Example Zip Code Data

Five classification networks
 Net-1: no hidden layers, equivalent to logistic regression
 Net-2: 1 layer, 12 units, fully connected
 Net-3: 2 layers locally connected
 Net-4: like Net-3 with weight sharing

 local connectivity: receptive field of adjacent units in 
the first (second) hidden layer are two (one) units apart

 shared weights: same weights among all receptive fields
in a feature map, but individual bias

(ESL 11.7, Le Cun 1989)XIII 32
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Example Zip Code Data

Five classification networks
 Net-1: no hidden layers, equivalent to logistic regression
 Net-2: 1 layer, 12 units, fully connected
 Net-3: 2 layers locally connected
 Net-4: like Net-3 with weight sharing
 Net-5: like Net-4 with 2 levels of weight sharing

 local connectivity: receptive field of adjacent units in 
the first (second) hidden layer are two (one) units apart

 shared weights: same weights among all receptive fields
in a feature map, but individual bias

(ESL 11.7, Le Cun 1989)XIII 33
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Example Zip Code Data

NNs are especially effective for problems with high signal-to-noise ratio & spatial redundancy
However they lack the ability to interpret the prediction

(ESL 11.7, Le Cun 1989)XIII 34

Network Links Weights % Correct
Net-1 2570 2570 80.0
Net-2 3214 3214 87.0
Net-3 1226 1226 88.5
Net-4 2266 1132 94.0
Net-5 5194 1060 98.4



Convolutional Neural Networks

XIII 35

We slide a kernel/filter over the image 

We can visualize the learned filters in each layer

layer 1 filter

layer 2 filter

layer 3 filterpadding dilation stride



Deep Learning

Current hype in neural networks
 build deep (multilayer) and wide networks
 layers learn a hierarchy of problem features, as exemplified by the digit example above
 adjust training schedule (some layers learn faster than others)
 results in high accuracy models
 especially suitable for image analysis and natural language problems

Very well written online textbook: Neural Networks and Deep Learning by Michael Nielsen

XIII 36

http://neuralnetworksanddeeplearning.com/


A Neural Network Playground

Tinker with a NN directly in your browser Tinker with a CNN in your browser

XIII 37

https://playground.tensorflow.org/
https://poloclub.github.io/cnn-explainer/


Summary

Neural networks automatically learn the transformation from the data

Feed-forward NN: several layers of linear transformations followed by a nonlinearity

We train NNs with gradient descent (backpropagation via automatic differentiation)

There are many hyperparameters to tune: num. neurons, num. hidden layers, weight decay

Suitable for problems with high SNR and (spatial) redundancy: images, text, audio, graphs, …

XIII 38


	Slide Number 1
	Another look at (Logistic) Regression
	Introducing Non-linearity
	Neural Networks
	Neural Networks
	The activation function 𝜎
	Activation functions
	Naming of Neural Networks
	Fitting a Neural Network
	The Sound of Machine Learning
	Fitting a Neural Network
	Fitting a Neural Network
	Fitting a Neural Network
	Fitting a Neural Network
	Remarks on Backpropagation
	Remarks on Backpropagation
	Issues with Training
	The Effect of Weight Decay
	Issues with Training
	Issues with Training
	Issues with Training
	Example Sigmoids and Radials
	Example Sigmoids and Radials
	Example Sigmoids – Effect of Weight Decay
	Example Sigmoids – Determining 𝜆
	Example Sigmoids and Radials
	Note on Hyperparameter Tuning
	Example Zip Code Data
	Example Zip Code Data
	Example Zip Code Data
	Example Zip Code Data
	Example Zip Code Data
	Example Zip Code Data
	Example Zip Code Data
	Convolutional Neural Networks
	Deep Learning
	A Neural Network Playground
	Summary

