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Overview

So far, we focused on models and algorithms, optimizing for simple metrics
 e.g. misclassification rate, reconstruction error, etc

As ML/AI is becoming more widespread and now also used in critical applications 
 e.g. algorithmic decision-making involving humans
 we have to consider societal impacts

ML models that get deployed in the real-world create feedback loops 
 these can have potentially unintended consequences

We should always ask: ”Are we optimizing for the right thing?”
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Accuracy Alone is not Enough

 Privacy: how do we prevent revealing sensitive information from training data (e.g. medical diagnosis)
 Fairness: how do we do not disadvantage particular individuals or (marginalized) groups 
 Security: how do we prevent attackers from fooling a system, poison training data, steal our model, etc.?
 Explainability: humans should be able to understand why and how a decision was made about them
 Uncertainty: we should be able to quantify how confident we are in our predictions
 Accountability: an outside auditor should be able to verify that the system is functioning as intended

Other very important considerations include carbon footprint, fair and ethical data collection, etc.
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Impact of AI/ML More Broadly

 How should self-driving cars trade off the safety of passengers, pedestrians, etc.? (Trolley problems)

 Face recognition and other surveillance-enabling technologies

 Autonomous weapons

 Risk of international AI arms races

 Long-term risks of super-intelligent AI

 Unemployment due to automation

 Bad side effects of optimizing for click-through
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Disclaimer

These concepts sound vague
 properly formalizing them is half the challenge
 many of these topics are active areas of research, only started getting serious attention 5 years ago

Technology alone is not the solution – at best it is part of the solution
 tackling these issues must involve social/legal/political aspects 
 must be an interdisciplinary effort

Today we will focus on two topics: privacy and fairness
 well-established technical principles and techniques that address parts of these problems
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Anonymization is Hard

US government releases a dataset of medical visits (Sweeney, '13)
 identifying info (names, addresses and SSNs) was removed
 data on zip code, birth date, and gender was left
 around 87% of Americans are uniquely identifiable from this triplet

Netflix Challenge: competition to improve movie recommendations
 dataset of 100 million movie ratings with anonymized user ID
 99% of users who rated at least 6 movies could be identified by cross-referencing with IMDB reviews 

(associated with real names) (Narayanan & Smahtikov '08)

Re-Identifying 40% of anonymous volunteers in DNA Study (Sweeney, '13)

"A Face is Exposed for AOL Searcher No. 4417749" (Barrabo, '06)
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Example Anonymization is Hard

It is not sufficient to prevent unique identification of individuals
 if we know Gretchen is 55 and is included in this (fictional) database, we know she has 1 of 2 diseases

(Kearns & Roth, The Ethical Algorithm)XIV 7

Name Age Gender Zip Smoker Diagnosis

* 60-70 Male 191** Y Heart disease

* 60-70 Female 191** N Arthritis

* 60-70 Male 191** Y Lung cancer

* 60-70 Female 191** N Crohn’s disease

* 60-70 Male 191** Y Lung cancer

* 50-60 Female 191** N HIV

* 50-60 Male 191** Y Lyme disease

* 50-60 Male 191** Y Seasonal allergies

* 50-60 Female 191** N Ulcerative colitis



Sensitive Information in the Model
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Even if you don't release the raw data, the weights
of a trained network might reveal sensitive information

Model inversion attacks recover information about 
the training data from the trained model

Example 1: Reconstructing faces given a classifier trained on 
private data, using a generative model trained on public data

Example 2: Email provider uses language models for email 
autocompletion, the model can remember (and spit out) sensitive info from past emails

reconstructing faces (Zhang et al., 2019)



The Main Question in Differential Privacy
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How can we 
compute statistical queries and train ML models 

without leaking too much
sensitive information about any individual? 



Warmup: Randomized Response

Goal: Conduct a survey on a sensitive question with a binary (yes/no) answer

Examples
 Have you ever committed tax fraud?
 Does anyone in your family suffer from HIV?

We want to motivate participants to answer truthfully, despite sensitive nature of the question

Idea: introduce randomization to provide plausible deniability
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Warmup: Randomized Response
Let each of the 𝑛𝑛 participants follow the procedure
 flip a coin
 if it lands tails, answer truthfully
 otherwise, flip another coin, if that one lands tails answer Yes, else answer No

What is the fraction of participants that answer Yes truthfully?

We can accurately estimate the population mean 𝜇𝜇 as 𝜇𝜇 = 1
4

1 − �𝜇𝜇 + 3
4
�𝜇𝜇

 �̂�𝜇 is the MLE (i.e. the counts)

 𝑃𝑃 response = Yes truth = Yes = 3
4

 𝑃𝑃 response = Yes truth = No = 1
4

 𝜇𝜇 is an unbiased estimator of the non-randomized mean �̂�𝜇
 variance decays as 1

𝑛𝑛
but is 4x larger because of the randomization

(Warner, 1965)XIV 11



Beyond Randomized Response

With randomized response we can compute useful queries (e.g. the fraction) in aggregate 
without learning the truthful answer for any individual 

In general, randomness is a useful technique for preventing information leakage

What if we want to answer more complex queries with mathematical privacy guarantees?
 e.g. computing arbitrary functions over data
 answer: Differential Privacy
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Differential Privacy (DP)

A (trusted) curator is given access to some input data 𝑋𝑋 ∈ 𝒳𝒳
 the curator computes some function 𝑌𝑌 = 𝑓𝑓(𝑥𝑥)
 the curator wants to release the output 𝑌𝑌 ∈ 𝒴𝒴 to the public without leaking too much information

Example
 let 𝒳𝒳 = 0, 1 𝑛𝑛 is the set of binary vectors, e.g. containing the answers to a survey question for 𝑛𝑛 users
 let 𝑓𝑓 be the mean, thus 𝒴𝒴 ∈ [0, 1]
 let 𝑋𝑋,𝑋𝑋′ ∈ 𝒳𝒳 be two "neighboring" input vectors, such that 𝑋𝑋′ differs from 𝑋𝑋 in only one position

 they differ in the answer of a single participant

Informally, differential privacy enforces that 𝑓𝑓(𝑋𝑋) and 𝑓𝑓 𝑋𝑋′ do not differ significantly 
 preventing leaking the answer of also of new participants
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Differential Privacy

Given an input and output spaces 𝒳𝒳 and 𝒴𝒴, a symmetric neighboring relation ≃, a function of 
interest 𝑓𝑓, and a privacy parameter 𝜖𝜖 ≥ 0

Definition: A randomized mechanism ℳ𝑓𝑓:𝒳𝒳 → 𝒴𝒴 is 𝜖𝜖-differentially private if for all
neighboring inputs 𝑋𝑋 ≃ 𝑋𝑋𝑋 and for all sets of outputs Y ⊆ 𝒴𝒴 we have:

𝑒𝑒−𝜖𝜖 ≤
𝑃𝑃 ℳ𝑓𝑓 𝑋𝑋 ∈ 𝑌𝑌
𝑃𝑃 ℳ𝑓𝑓 𝑋𝑋′ ∈ 𝑌𝑌

≤ 𝑒𝑒𝜖𝜖

ℳ𝑓𝑓 includes the function 𝑓𝑓 we want to compute, it is not useful to output random numbers
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Intuition Differential Privacy

The outcome should not change by much if we only modify a single instance

 ≃ captures what is protected, e.g. two different vectors 𝑋𝑋 and 𝑋𝑋𝑋 that differ in a single coordinate, or 
two different datasets 𝒟𝒟 and 𝒟𝒟’ that differ in single instance

 if the mechanism ℳ𝑓𝑓 behaves nearly identically 𝑋𝑋 and 𝑋𝑋𝑋 an attacker can't tell whether 𝑋𝑋 or 𝑋𝑋𝑋 was used 
and thus can't learn much about the individual
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Laplace Mechanism (Output Perturbation)

Define the global sensitivity of a function 𝑓𝑓:𝑋𝑋 → ℝ𝑑𝑑 as Δ = max
𝑋𝑋≃𝑋𝑋′

𝑓𝑓 𝑋𝑋 − 𝑓𝑓 𝑋𝑋′ 1

 it measures the magnitude by which a single instance can change the output of 𝑓𝑓 in the worst case

Output perturbation with Laplace noise
 a curator holds data 𝑋𝑋
 the curator computes the function 𝑓𝑓(𝑋𝑋)

 they sample Laplace noise 𝑍𝑍 ∼ Lap 0, Δ
𝜖𝜖

𝑑𝑑
i.i.d. for each dimension

 they reveal the noisy value 𝑓𝑓 𝑋𝑋 + 𝑍𝑍

We can prove that this mechanism is 𝜖𝜖-differentially private 
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Example Laplace Mechanism for the Mean

Computing the mean 𝜇𝜇 = 𝑓𝑓 𝑋𝑋 = 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 1
𝑛𝑛
∑𝑥𝑥𝑖𝑖 where 𝑥𝑥𝑖𝑖 ∈ {0, 1} are binary

The global sensitivity is Δ = 1
𝑛𝑛

 changing the value of a single instance can change the output by at most 1
𝑛𝑛

Sample noisy 𝑍𝑍 ∼ Lap 0, 1
𝜖𝜖𝑛𝑛

and release the noisy mean �𝜇𝜇 = 𝜇𝜇 + 𝑍𝑍

In this case we can also say something about the utility of this mechanism
 �̂�𝜇 − 𝜇𝜇 = Exponential 𝜖𝜖𝑛𝑛 which has a mean of 1

𝜖𝜖𝑛𝑛

 the true mean is not going to differ much from the randomized mean, difference decreases with size of the data
 in general, computing the sensitivity of a function is challenging, showing something about utility even more so
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Differential Privacy for Machine Learning

Perturb input: perturb 𝒟𝒟 and directly and rely on the post-processing property
 robustness to post-processing: if ℳ is 𝜖𝜖-DP then g ∘ℳ is 𝜖𝜖-DP for any function 𝑔𝑔
 you can apply any function 𝑔𝑔 on an output from a DP mechanism and the new output remains DP, as 

long as you don't touch again the data

Perturb weights: compute the optimal param 𝜃𝜃∗ and perturb them with Laplace noise
 need to calculate the global sensitivity of the optimization procedure which can be extremely difficult

Perturb objective: optimize ℒ 𝒟𝒟,𝜃𝜃 + 𝜃𝜃𝑇𝑇𝑍𝑍 where 𝑍𝑍 is some carefully selected noise

Perturb gradients: perturb and release the gradient of ℒ w.r.t. a mini-batch of the data
 useful in federated learning where we have no centralized entity that has access to all the data
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Differential Privacy Summary

A lot of ML models are trained on datasets containing sensitive information about individuals, 
and database reconstruction attacks can be surprisingly effective

Differential privacy gives a way of provably preventing (much) information about individuals 
from leaking

The Laplace mechanism is an important building blocks of differential privacy

Differentially private algorithms can accurately answer queries for large populations
 The 2020 US Census used differential privacy
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Motivation: The Influence of Biased Algorithms

 Selecting job applicants: XING ranks less qualified male candidates higher than more qualified female 
candidates (Lahoti et al. 2018)

 Recidivism prediction and predictive policing: COMPAS: high-risk FP: 23.5% for white vs. 44.9% for 
black, and low-risk FP: 47.7% for white vs. 28.0% for black (ProPublica article)

 Facial recognition: Commercial software has much lower accuracy on females with darker color 
(Buolamwini and Gebru, 2018)

 Search and recommendations: Search queries for African-American names more likely to return ads 
suggestive of an arrest  (Sweeney, 2019)

 Bias found in word embeddings and translation: man-woman=surgeon-nurse (Bolukbasi et al.  2016)
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What Causes the Bias?

 Tainted training data: any ML system maintains (and amplifies) the existing bias in the data caused by 
human bias, e.g. hiring decisions made by a (biased) manager used as labels, historic and systematic 
biases in the data collection process, etc.

 Skewed sample: initial predictions influence future observations, e.g. regions with initial high crime rate 
get more police attention (and thus higher recorded crime in the future), selection bias

 Proxies: even if we exclude legally protected features (e.g. race, gender, sexuality) other features may be 
highly correlated with these

 Sample size disparity: models will tend to fit the larger groups first (possibly) trading off accuracy for 
minority groups

 Limited features: features may be less informative or reliably collected for minority groups
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Why Fairness is Hard

How to define fairness?
How can we formulate it so it can be considered in ML systems?

Two distinct notions from the law (Barocas and Selbst, 2016):
 Disparate treatment: decisions are (partly) based on the subject's sensitive attribute
 Disparate impact: disproportionately hurt (or benefit) people with certain sensitive attribute values

Currently, no consensus on the mathematical formulations of fairness
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An Illustrating Example

We are a bank trying to fairly decide who should get a loan
 i.e. predict which people will likely pay us back and which will default

We have two groups: blue and orange (the sensitive attribute)
 this is where discrimination could occur
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simulating loan thresholds

http://research.google.com/bigpicture/attacking-discrimination-in-ml/


Definitions of Fairness

How can we test if our (loan repay) classifier is fair?

Group fairness: aim to treat all groups equally
 e.g. we can require that the same percentage of blue and orange receive loans
 or equal false negative rates 𝑃𝑃 no loan | would repay, orange = 𝑃𝑃 no loan | would repay, blue

Individual fairness: treat similar examples similarly for an appropriate definition of similarity

Counterfactual fairness: same decision in the actual world and a counterfactual world where 
the individual belongs to a different group
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Group Fairness Setup

Consider binary classification with single sensitive attribute for simplicity:
 𝑋𝑋 are the features of an individual (e.g. credit history)
 𝐴𝐴 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, … is the sensitive attribute (gender, race, etc.)
 𝑅𝑅 = 𝑟𝑟 𝑋𝑋,𝐴𝐴 ∈ {0, 1} is the binary predictor (e.g. to grant a loan or not) which makes a decision
 𝑌𝑌 ∈ 0, 1 is the target variable representing the ground truth

Assume that 𝑋𝑋,𝐴𝐴,𝑌𝑌 ∼ 𝒟𝒟 are generated from an underlying data distribution
Then 𝑋𝑋,𝐴𝐴,𝑌𝑌 and 𝑅𝑅 are all random variables

Shortcut notation for the probability conditional on group 𝑎𝑎: 𝑃𝑃𝑎𝑎 𝑅𝑅 = 𝑃𝑃 𝑅𝑅 ∣ 𝐴𝐴 = 𝑎𝑎
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Naive Approach: Fairness Through Unawareness

We should not include the sensitive attribute as a feature in the training data
𝑅𝑅 = 𝑟𝑟(𝑋𝑋) instead of 𝑅𝑅 = 𝑟𝑟(𝑋𝑋,𝐴𝐴)

Pros/Cons:
 intuitive, easy to use and implement
 consistent with disparate treatment which has legal support (e.g.  the "General Equal Treatment Act" in 

Germany)
 however, there can be many highly correlated features (e.g. neighborhood) that are proxies of the 

sensitive attribute (e.g. race)
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First Criterion: Independence

Require: 𝑅𝑅 independent of 𝐴𝐴, denoted 𝑅𝑅 ⊥ 𝐴𝐴
 also called Demographic Parity, Statistical Parity, Group Fairness, Darlington Criterion (4)

In case of binary classification for all groups 𝑎𝑎, 𝑏𝑏 it has to hold 𝑃𝑃𝑎𝑎 𝑅𝑅 = 1 = 𝑃𝑃𝑏𝑏(𝑅𝑅 = 1)
 there are also approximate version where we allow the probabilities to be approximately equal (±𝜖𝜖)

In our example, this means that the acceptance rates of the applicants from the two groups 
must be equal, i.e. same percentage of applications receive loans
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How to Achieve Independence?

Post-processing: adjust a learned classifier so as to be uncorrelated with the sensitive attribute

Training time constraint: include the exact/approximate constraints in the optimization

Pre-processing: e.g. via representation learning
 map the instances into some space where information about 𝐴𝐴 is destroyed (e.g. fair PCA)
 example representations learned by a variational fair autoencoder (Louizos et al., 2016)
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Pros/Cons of Independence

Legal support: "four-fifth rule" prescribes that a selection rate for any disadvantaged group 
that is less than four-fifths of that for the group with the highest rate must be justified

What if 83% of Blue is likely to repay, but only 43% of Orange is?
 then independence is too strong
 rules out perfect predictor 𝑅𝑅 = 𝑌𝑌 when the base rates are different

Laziness: we can trivially satisfy the criterion if we give loan to qualified people from one 
group and random people from the other
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Second Criterion: Separation

Require: 𝑅𝑅 and 𝐴𝐴 to be independent conditional on the target 𝑌𝑌, denoted  𝑅𝑅 ⊥ 𝐴𝐴 ∣ 𝑌𝑌
 also called Equalized Odds, Conditional Procedure Accuracy, Avoiding Disparate Mistreatment 

In case of binary classification for all groups 𝑎𝑎, 𝑏𝑏 it has to hold
𝑃𝑃𝑎𝑎 𝑅𝑅 = 1 ∣ 𝑌𝑌 = 1 = 𝑃𝑃𝑏𝑏(𝑅𝑅 = 1 ∣ 𝑌𝑌 = 1) equal true positive (TP)
𝑃𝑃𝑎𝑎 𝑅𝑅 = 1 ∣ 𝑌𝑌 = 0 = 𝑃𝑃𝑏𝑏(𝑅𝑅 = 1 ∣ 𝑌𝑌 = 0) equal false positive (FP)

Equality of opportunity is a commonly used relaxation where we only match TP
 in our example, this means we should give loan to equal proportion of individuals who would repay
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Achieving Separation

Area under the ROC (Receiver Operating Characteristic) curve
 each point on the solid curves is realized by thresholding the predicted score at some value
 i.e. predict 𝑟𝑟 𝑋𝑋,𝐴𝐴 > 𝑡𝑡 for some threshold 𝑡𝑡
Pick a classifier that minimizes the given cost (e.g. maximizes profit)
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intersection of areas
under the curves
for two groups



Pros/Cons of Separation

Optimal predictor not ruled out: 𝑅𝑅 = 𝑌𝑌 is now allowed

Penalizes laziness: it provides incentive to reduce errors uniformly in all groups

It may not help closing the gap between two groups
 granting more loans to the group that is more likely to repay now makes the groups more likely to have 

better living conditions and thus even more likely to repay in the future, thus widening the gap
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Third Criterion: Sufficiency

Require 𝑌𝑌 and 𝐴𝐴 to be independent conditional on 𝑅𝑅, denoted  𝑌𝑌 ⊥ 𝐴𝐴 ∣ 𝑅𝑅
 also called Cleary model, Conditional Use Accuracy, Calibration Within Groups

In case of binary classification for all groups 𝑎𝑎, 𝑏𝑏 and all output probabilities 𝑟𝑟 it has to hold
𝑃𝑃𝑎𝑎 𝑌𝑌 = 1 ∣ 𝑅𝑅 = 𝑟𝑟 = 𝑃𝑃𝑏𝑏(𝑌𝑌 = 1 ∣ 𝑅𝑅 = 𝑟𝑟)

In our example, the score used to determine if a candidate would repay should reflect the 
candidate's real/actual capability of repaying
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Achieving Sufficiency

In general a classifier 𝑅𝑅 is calibrated if for all 𝑟𝑟 ∈ 0, 1 we have 𝑃𝑃 𝑌𝑌 = 1 𝑅𝑅 = 𝑟𝑟 = 𝑟𝑟
 of all instances assigned a probability or score value 𝑟𝑟 an 𝑟𝑟 fraction of them should be positive

Calibration for each group implies sufficiency: 𝑃𝑃𝑎𝑎 𝑌𝑌 = 1 𝑅𝑅 = 𝑟𝑟 = 𝑟𝑟 for all groups 𝑎𝑎

We can apply standard calibration techniques to each group (if necessary)
 Platt scalling: given an uncalibrated score treat it as a single feature and fit a one variable regression 

model against 𝑌𝑌
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Pros/Cons of Sufficiency

Satisfied by the Bayes optimal classifier

For predicting 𝑌𝑌 we do not need to see 𝐴𝐴 when we have 𝑅𝑅

Equal chance of success (𝑌𝑌 = 1) given acceptance (𝑅𝑅 = 1)

Similar to before it may not help closing the gap between the groups
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Fairness Summary: Growing List of Criteria

 Independence: 𝑅𝑅 ⊥ 𝐴𝐴
 Separation: 𝑅𝑅 ⊥ 𝐴𝐴 ∣ 𝑌𝑌
 Equality of opportunity: 𝑅𝑅 ⊥ 𝐴𝐴 ∣ 𝑌𝑌 = 1
 Sufficiency: Y ⊥ 𝐴𝐴 ∣ 𝑅𝑅
 … and many many more

Many of these definitions are provably incompatible, i.e. they are mutually exclusive except in 
degenerate cases
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Comparing Different Criteria

XIV 37

The cost of FP is typically much greater than the profit for TP
 example: different thresholds induced by different criteria (Hardt et al., 2016)



Visualizing the Trade-offs
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Attacking discrimination with smarter machine learning

http://research.google.com/bigpicture/attacking-discrimination-in-ml/


Bonus: Robustness to Adversarial Examples
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Deliberate data perturbations designed to achieve a specific malicious goal (misclassification)

the ML system classifies the
adversarially modified stop sign as a
speed limit sign (Eykholt et al., 2018)

predicted: panda predicted: gibbon (Goodfellow et. al, 2014)

adversarial glasses fool facial recognition systems
into classifying the wearer as someone else
(Sharif et al., 2016)



Summary

Decisions based on data are not always accurate, reliable, or fair

DP allows us to compute arbitrary queries on (sensitive) data with provable guarantees
 there are no absolute privacy guarantees, your neighbor's habits are correlated with your habits

Fairness criteria require (and enforce) some invariances w.r.t. sensitive attributes 
 algorithmic fairness ≠ actual fairness, social/legal/political effort is also needed
 without a model of long-term impact it is difficult to foresee the effects of a fairness criterion

Accuracy, Fairness, Privacy, Robustness, and other aspects are non-trivially related

Algorithmic solutions are only (small) part of the puzzle
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