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Problem 1 (Introduction) (10 points)

1. Are the following statements correct or incorrect? Explain each answer. (7pts)

(a) Among all classifiers presented in the lecture, Support Vector Machines always (1pt)
achieve the lowest test error, since it finds the maximum margin classifier.

(b) A feed-forward neural network without an activation function is equivalent to (1pt)
a linear model.

(c) The k-means algorithm is guaranteed to converge to the global optimum. (1pt)

(d) The t-SNE embedding captures the directions of largest variance in the data. (1pt)

(e) t-SNE is deterministic, i.e. for the same data it always gives the same result. (1pt)

(f) k-fold cross-validation with k < n− 1 has higher bias than LOOCV. (1pt)

(g) For data of a large enough sample size n, bootstrap sets that are sampled uni- (1pt)
formly at random will be uncorrelated.

2. Josephine is analyzing three datasets, but is not entirely happy with the results. (3pts)
Explain for each case how we can address her concerns.

(a) On Dataset 1 of p = 50 predictors for a real-valued outcome Y , Josephine (1pt)
applied polynomial regression (d = 4). She is concerned the model overfits and
that some of the predictors are not relevant for predicting Y .

(b) On Dataset 2 of a single predictor X and real-valued outcome Y , Josephine fits (1pt)
a piecewise polynomial regression spline with k = 5 knots. When plotting the
result, the fitted function looks discontinuous in the regions around the knots,
making Josephine wonder how to make the model more smooth.

(c) On Dataset 3 of n = 1000 samples and p = 100 variables, Josephine applies (1pt)
k-means clustering to discover k clusters. How can she interpret the results, for
example, to verify if the clusters make sense?
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Solution.

1. (a) No. Counterexample: XOR problem. (1pts)

(b) Yes. A feed-forward neural network with a linear activation function can be (1pts)
re-written as a linear model with coefficients β =

∏
iWi, where Wi denotes the

weights of the respective layer.

(c) No. K-means is only guaranteed to converge to a local optimum. (1pt)

(d) No. This is the objective of PCA, not t-SNE. (1pt)

(e) No. t-SNE is a stochastic algorithm. (1pt)

(f) Yes. Higher bias of the learned model cause we hold out larger validation set. (1pt)

(g) No. Bootstrapping samples with replacement and the resulting sets will always (1pt)
be correlated.

2. (a) Adding L1 regularization, like in Lasso, can mitigate overfitting and allow for
variable selection. Alternatively, we can address overfitting by reducing the de-
gree d, doing Ridge regression, and do subset selection, cross validation or similar
to select relevant variables.

(b) Adding continuity constraints on the derivatives as seen in the lecture.

(c) Dimensionality reduction technique such as t-SNE.
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Problem 2 (Linear Regression) (10 points)

1. Data scientists Ali Prediktørson and Omer Régrèssionaire investigate the effects of
two predictors X1, X2 on a real-valued outcome Y . Using a linear regression model
f̂ , they obtain the following coefficients and standard errors (intercept not shown),

coefficient std. error
β SE (β)

X1 3.31 0.04
X2 -0.28 0.0012

(a) What can you say about the relationship between X1, X2 and Y based on the (1 pt)
coefficients β?

(b) State the 95% confidence interval for the coefficient of X1. (1 pt)

(c) The dataset has n = 103 samples, a TSS = 1500, and the above model has (1 pt)
an RSS = 600. Explain step by step how to design a hypothesis test to decide
whether at least one of the variables X1, X2 is relevant for predicting Y .

2. Omer plots the residuals of their model for X1 in Figure 1.

(a) Ali argues that the points x2 and x3 have unusual values of X1 compared to the (1 pt)
population and suggests removing them from the dataset to fit a more reliable
model. Do you agree? Why?

(b) Ali suggests to do Leave-One-Out Cross-Validation (LOOCV) three times, each (1 pt)
time leaving out one of the points x1, x2, and x3. Based on the residual plot,
which of these do you expect to result in the highest train, respectively test
error? Why?
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Figure 1: Residual Plot for Problem 2.2
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(i) Residuals for D1.
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(iii) Residuals for D3.

Figure 2: Residual Plots obtained by Filippo for Problem 2.4

3. Filippo Speçulatio is convinced that we should include another predictor X3. He (2 pts)
makes the following claims. For each, determine whether it is true or false, and give
a brief explanation why.

(i) The R2 score of the model that includes X3 in addition to X1, X2 will always
be larger than that over the one with only X1, X2.

(ii) As the predictor X1 is significant in the model with only X1, X2, it will still be
significant when we include X3.

(iii) We can check which predictors are useful by adding a regularization term.

(iv) We can check whether the RSS values for any two predictors are correlated with
each other to find out whether there is an interaction between two predictors.
If so, we should add an interaction term to the model.

4. Filippo applies the linear model from Problem 2.1 to three different datasets, D1, D2, (3 pts)
and D3. He forgets to fit the intercept term. He plots the residual plots in Figure 2.

(a) For each of the three datasets, explain why a linear model is suited or not. (1 1
2 pts)

(b) For each of the three datasets, propose an appropriate change to the model to (1 1
2 pts)

improve the prediction accuracy. Explain your reasoning.
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Solution.

1. (a) Positive correlation with the outcome for X1, and negative correlation with the
outcome for X2.

(b) Confidence interval [β − 2SE(β1), β1 + 2SE(β1)] = [3.23, 3.39].

(c) Hypothesis testing using F−statistic

TSS − RSS
RSS

n− p− 1

p

Here, resulting in F -statistic 150. The corresponding p-value can be used for
rejecting the null-hypothesis H0 : β1 = β2 = 0. (Students don’t need to compute
values but list the steps.)

2. (i) True, R2 monotonically increases even if we add irrelevant predictors.

(ii) False, X1 may be insignificant in the joint model, for example, if it’s corellated
with X3.

(iii) True, Lasso constrains the coefficients of irrelevant predictors to zero.

(iv) False, this indicates that the predictors are corellated rather than interacting.

3. (a) Among the three options, leaving out x1 or x2 will improve train error the most,
for x3 little effect. Conversely, small test error for x3 but large for the others.

(b) No, better to remove the outliers x1, x2.

4. (a) D1: heteroskedastic, can modify model to weighted linear regression.

(b) D2: linear, should fit intercept.

(c) D3: polynomial (here d = 2), should use nonlinear regression method.
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Problem 3 (Classification) (10 points)

1. (a) Give the decision boundary of a Maximal Margin Classifier as a function g(x) = (1 pt)
0, x ∈ Rp. What is the geometric interpretation?

(b) Consider Figure 3. Which of the three plots correspond to the decision boundary (1 pt)
of a Soft-Margin Support Vector Classifier with C = 0? Explain your answer.

(i) (ii) (iii)

Figure 3: Three decision boundaries

(c) What is the primary limitation of a hard-margin SVM and how does a soft- (2 pt)
margin SVM resolve it? Sketch a dataset that showcases the problem.

2. (a) What problem does Christina face when she would apply Linear Discriminant (1 pt)
Analysis (LDA) on the data depicted in Figure 4? Which classifier would you
recommend her instead? Why?

Figure 4: Plot belonging to Problem 3.2.

(b) In the lecture, we derived LDA using Bayes’ rule. Starting from (3 pt)

pk(x) = Pr(Y = k | X = x) =
πkfk(x)∑K
ℓ=1 πℓfℓ(x)

,

we assumed that fk(x) is a univariate Gaussian with the same variance across
all classes.
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Christina proposes that we should assume that each class follows a Rayleigh
distribution. The density of the Rayleigh distribution is given by

fk(x) =

 x
σ2
k
e

−x2

2σ2
k , x ≥ 0

0 , x < 0
, where σk > 0.

Derive the discriminant and the decision boundary for x ≥ 0. Is the discriminant
linear in x? You can assume that the parameters are chosen such that we do
not divide by 0.

3. Muhammed claims that Logistic Regression is a non-linear model and shows Figure 5 (2 pt)
as evidence. Is he right? Explain your answer.

Figure 5: Plot for Problem 3.3
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Solution.

1. (a) g(x) = wTx + b = 0, where w is the weight vector, b is the bias term, x the
input. The decision boundary is a hyperplane in Rp.

(b) Figure (a) corresponds to the SVM decision boundary, as it has the biggest
margin to both classes. The DB in Figure (b) and (c) either closer to class -1
or class 1.

(c) A outlier or wrongly labeled datapoint results in bad decision boundary for the
Hard-margin SVM.

2. (a) The dataset is not linearly seperable, hence LDA can not find a hyperplane to
seperate the classes. Use an SVM with an RBF kernel.

(b) • Discriminant: δk(x) = ln(πkfk(x)) = ln(πk) + ln(x)− ln(σ2
k)−

x2

2σ2
k

• Decision boundary: In the following we assume that parameters are chosen
such that we do not divide by 0.

δk(x)− δl(x) = 0

ln(πk)− ln(σ2
k)−

x2

2σ2
k

−
(
ln(πl)− ln(σ2

l )−
x2

2σ2
l

)
= 0

x2(
1

2σ2
l

− 1

2σ2
k

) = ln(πl)− ln(πk)− ln(σ2
l ) + ln(σ2

k)

x2 =
(
ln(πl)− ln(πk)− ln(σ2

l ) + ln(σ2
k)
)( 1

2σ2
l

− 1

2σ2
k

)−1

• Discriminant is non-linear

3. Logistic regression is considered a linear model because it makes use of a linear
combination of input features. The term "linear" in this context refers to the linearity
of the relationship between the input features and the log-odds (logit) of the output.
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The logistic regression model takes the form:

P (y = 1 | X) =
1

1 + e−(β0+β1X1+β2X2+...+βnXn)
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Problem 4 (Unsupervised) (10 points)

1. Jawad and Ahmed argue about what is the best laptop. Ahmed claims his is better
because it has the new M4 processor, Jawad disagrees and says his is better because
it has a touch display.

As they are data scientists, they agree to settle the matter by examining a dataset
X ∈ Rn×p of n = 10 000 laptops for which they collect p = 1000 different features.

They first want to inspect the data visually. For this, they use PCA to reduce their
dataset to p = 2 dimensions.

(a) Briefly describe the general idea behind PCA. (1 pt)

(b) We know that the principal components of X are the eigenvectors of the covari- (3 pts)
ance matrix XTX. Show that the unit eigenvector w1 with the largest eigenvalue
λ1, where it holds that

XTXw1 = λ1w1 , λ1 > λ2 > · · · > λp,

is the principal component that maximizes the variance of the projected data.

(c) Another view on PCA is that it tries to minimize the reconstruction error of (1 pt)
the data. Explain how reconstruct the projected data back to the original space
and what error the first principal component obtains in comparison to the other
principal components.

2. After applying PCA, they use k-means to cluster the data into 5 clusters. (1 pt)

Jawad runs K-means on his Microsoft Surface Pro and gets clustering with an in-
cluster variation of 1000. Ahmed runs k-means on his M4 Macbook Pro and gets a
clustering with an in-cluster variation of 500. Ahmed argues that his result is better
because he is using Apple Silicon. Describe another reason why they could be getting
different results that is not related to the processor.

3. Consider the following two initialization strategies for k-means:

• Randomly pick K points from the dataset as the initial centroids.

• Randomly assign each point to a cluster and compute the initial centroids as
the averages of these clusters.

(a) For each of the two strategies, where are the initial centroids expected to be (2 pts)
on average, and how much variance would the centroids have between different
initializations?

(b) For each of the two strategies, describe an advantage over the other, when we (2 pts)
employ them in standard k-means.
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Solution.

1. (a) The general idea behind PCA is to find a lower dimensional representation of
the data that captures the most variance. The data is linearly projected onto a
lower dimensional subspace, while trying to minimize the reconstruction error.

(b) The variance of the data projected onto a principal component w is given by

1

n

n∑
i=1

(
wTxi

)2
=

1

n
wT

(
n∑

i=1

xix
T
i

)
w =

1

n
wTXTXw

As w is an eigenvector of we know that

1

n
wTXTXw =

1

n
λwTw .

As ||w|| = 1, we have that the variance is given by λ
n . This term is maximized

by λ1 as it is the largest eigenvalue of XTX.
(c) To reconstruct the projected data, we simply multiply the projected data with

the principal components and add the mean of the original data if it was sub-
tracted before, i.e.

X̂ = XWW T + X̄ .

The first principal component minimizes the reconstruction error, as it maxi-
mizes the variance of the projected data.

2. The initialization of K-means is random, so it is possible that Jawad’s clustering is
worse than Ahmed’s clustering simply because of the initialization.

3. (a) • If we randomly pick K points as initial centroids, then the centroids are
spread uniformly throughout the entire domain, with each point having a
probability of 1/n to be included. Therefore, the expected value of the initial
centroids is the mean of the data x̄, and the variance is given by V ar(X).

• For the second approach, we first randomly assign each point to a cluster.
Still, the initial centroid is expected to be x̄, but the variance is smaller. This
is because we use a subsample of the data to compute the initial centroids,
which reduces the variance.

(b) • Using the first strategy, we expect to have more spread out initial centroids,
which is beneficial for K-means to find distinct clusters. This is a downside
of the second strategy, as the initial centroids are more likely to be close to
each other.

• A downside of the first strategy is that outliers could be chosen as initial
centroids, which could lead to bad results, near empty clusters due to ini-
tializations. However, this is less likely to happen with the second strategy,
as the initial centroids are computed using a subsample of the data where
outliers are easily averaged out.
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Problem 5 (Trees and Splines) (10 points)

1. You are given a dataset with points from three different classes and want to classify
them based on a decision tree. The plot below illustrates the data points (class labels
are indicated by the symbols [×,△, ◦]) and the decision boundaries of a decision tree.

Figure 6: Decision tree Plot belonging to Problem 5.1.

(a) Draw the corresponding decision tree. Make sure that you include the features (1 pt)
(X1 or X2) and thresholds of the split. For each node in the tree, also give the
number of training samples per class that arrive in that node.

(b) Compute the Gini index for all internal nodes and all leaves in your decision (2 pt)
tree. Note: Your answer may contain improper fractions (e.g. 117

33 ).

2. (a) Assume we have a dataset of two predictive variables X1 and X2, with (2 pt)
two different classes C1 and C2. The points from class C1 are given by
A =

{
(i, i2) | i ∈ {1 . . . 100}

}
⊆ R2, while the points from class C2 are B ={(

i, 125i
)
| i ∈ {1 . . . 100}

}
⊆ R2. Construct a decision tree of minimal depth

that assigns as many data points as possible to the correct class. Provide for
each split the feature and corresponding thresholds. How many and which data
points are misclassified?

(b) Assume we have a dataset D of n samples (xi, yi) with xi ∈ R2 and yi ∈ {0, 1}. (1 pt)
We aim to train a decision tree using entropy as the splitting criterion. We stop
building the tree when there is zero improvement in purity for all splits.
Give an example of a small dataset D that contains at least one instance from
each class, and for which the learned decision tree has no splits – the root node
is a leaf. Justify your answer.
Hint: you do not need more than a few instances.

3. Assume a linear spline of K knots, i.e. f(xi) = β0 + β1xi +
∑K

k=1 bk(xi − ξk)+ where
(xi − ξk)+ = max(xi − ξk, 0) and bk are the spline coefficients. We aim to minimize
the sum of squared residuals

minimize S =
N∑
i=1

||yi − f(xi)||22 .

(a) What is the degree of freedom for this model? Explain your answer. (1 pt)
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(b) To avoid overfitting, we usually introduce a penalty on the spline coefficients (3 pt)
such as

∑K
k=1 b

2
k. Therefore we minimize a modified objective with regularization

parameter λ,

minimize S + λ

K∑
k=1

b2k .

Derive the closed-form solution of the optimal parameters β̂ =
[β0, β1 . . . , βd, b1 . . . , bk]

T
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Solution.

1. (a)
X1 < 3

[10, 9, 11]

X2 < 2
[10, 5, 0]

[0, 5, 0] [10, 0, 0]

X2 < 3
[0, 4, 11]

[0, 0, 11] [0, 4, 0]

(b)

Gini index: iG(t) =
∑
c

pi(1− pi) = 1−
∑
c

p2i

Root node: iG(t) = 1−
(
10

30

)2

−
(

9

30

)2

−
(
11

30

)2

≈ 0.664

Left child of root: iG(t) = 1−
(
10

15

)2

−
(

5

15

)2

− (0)2 ≈ 0.444

Right child of root: iG(t) = 1−
(

0

15

)2

−
(

4

15

)2

−
(
11

15

)2

≈ 0.391

Left leaf node: iG(t) = 1−
(
5

5

)2

−
(
0

5

)2

−
(
0

5

)2

= 0

Left-middle leaf node: iG(t) = 1−
(
10

10

)2

−
(

0

10

)2

−
(

0

10

)2

= 0

Right-middle leaf node: iG(t) = 1−
(

0

10

)2

−
(

0

10

)2

−
(
10

10

)2

= 0

Right leaf node: iG(t) = 1−
(
0

4

)2

−
(
4

4

)2

−
(
0

4

)2

= 0 (all leaf nodes)

2. (a) • Split root node based on feature 1 < 5

• Split both child nodes based on feature 2 ≤ 25

• (5, 25) is in both classes and misclassified.
(b) One possible solution is {(1, 1), 1}, {(−1,−1), 1}, {(−1, 1), 0}, {(1,−1), 0}

3. (a) The degree of freedom is K + 2 since there are K + 2 free parameters.
(b) We aim to minimize the sum of squared residuals with a penalty on the size of

the coefficients. The objective function is:

minimize S =

N∑
i=1

(
yi − β0 − β1xi −

K∑
k=1

bk(xi − ξk)+

)2

where (xi−ξk)+ = max(xi−ξk, 0) and bk are the spline coefficients. The penalty
term is added to the objective function as follows:
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minimize S + λ

K∑
k=1

b2k

We can write the objective function in matrix notation:

minimize (y −Xβ)T (y −Xβ) + λβTDβ

Differentiating with respect to β and setting the derivative to zero gives us:

∂

∂β

[
(y −Xβ)T (y −Xβ) + λβTDβ

]
= 0

Expanding and simplifying, we have:

−2XT (y −Xβ) + 2λDβ = 0

Rearranging terms, we arrive at the normal equations for the penalized least
squares problem:

(XTX + λD)β = XT y

Solving for β, we obtain the estimate:

β̂ = (XTX + λD)−1XT y

where D is a diagonal matrix with the first two diagonal terms zero (no penalty
on β0 and β1) and the rest are 1 (penalty on the bk coefficients).
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