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Problem 1 (Linear Regression) (10 points)

1. Determine if the following statements are true or false. For every false statement, (3pts)

either correct it by replacing a single term (noun or adjective) or provide a counter

example.

(i) Consider a linear model that consists of 3 predictors. We typically use the t-test

to measure the collinearity of a single predictor with any of the rest.

(ii) For a linear model that satis�es the least square assumptions, the R2 statistic

follows a t-distribution.

(iii) Removing a high-leverage point always increases the accuracy of a linear model

estimated using least squares.

(iv) The least squares estimator can always be computed.

2. Not-yet-famous researcher Kanis Jalofolias is super interested in how the size (Xs) (2pts)

and weight (Xw) of a cat a�ects the loudness of its meow (Y ). Each day he collects

a dataset of all meows he encounters on random stray cats, normalises the predic-

tors and creates a dataset. Since he knows that the relation must ful�l the OLS

assumptions, he used this method on each dataset to �t a model

Ŷ = β̂0 + β̂wXw + β̂sXs .

After a few days he has a collection of models, and he creates a scatter plot where

each point corresponds to the coe�cients of each predictor for a given model. Which

of the scatter plots below corresponds to the hypothetical case where:

(i) The predictors weight and size are uncorrelated?

(ii) The predictors weight and size are very positively correlated?

(iii) The predictors weight and size are very negatively correlated?

You are given 4 plots out of which you need to only use 3. Brie�y explain all your

choices and also why you left out the plot without a pair.
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Figure 1: Contour plots of the joint probability density of coe�cient estimates P
(
β̂w, β̂s

)
.
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3. NopeAI recently received a large investment, and now wants to predict the added

revenue based on two predictorsXbf andXtw, corresponding to its advertising budget

for two di�erent media, Bacefook and Twutter.

(a) How can we verify whether a linear model is the right choice? (1pt)

(b) Give an example scenario where adding an interaction term between Bacefook (1pt)

and Twutter would lead to a better model.

(c) World-famous CEO of NopeAI, Melon Usk, says that the prediction accuracy (1pt)

will improve if we add predictor X99
bf

to the model. How can we determine if

this improvement is signi�cant?

4. Not-yet-famous researcher Kavid Daltenpoth considers a linear regression task with

only one predictor. Using OLS he obtains an estimated β̂. The variance of the estimate

is Var(β̂) = 0.49. He looks at the following plot

and concludes:

�If X was uncorrelated with the outcome, with a probability 2.2% the

value of β̂ computed on a random dataset drawn from the true model

would be greater than the one I just found.�

(a) Write down the equation that describes the fact Kavid stated. What is the (1pt)

common name for this probability?

(b) What is the value of β̂? (1pt)
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Solution.

1. (a) False

We typically use the VIF for this.

(b) False

It follows an F -distribution.

(c) False

A simple counter-example is a high-leverage point that lies on the regression

line. In this case, removing this point will very likely decrease the accuracy of

the model.

(d) False

We can only compute a unique least square estimator when the covariance

matrix is full rank, so that it can be inverted. A simple counter example is when

the number of samples n is lower than the number of predictors p.

2. Since each day the collected cats are selected randomly from the same population (of

stray cats), each dataset comes from the same distribution of i.i.d. samples. Impor-

tantly, since the OLS assumptions are satis�ed, the true model has additive uncor-

related Gaussian noise and therefore the β̂w and β̂s estimates also follow a (jointly)

Gaussian distribution.

(i) Case B.

Uncorrelated predictors would lead to their estimates being uncorrelated Gaus-

sians around their true value (because the OLS estimator is unbiased).

(ii) Case C.

In this case both predictors are almost similar. A higher value of β̂w means a

lower value of β̂s, simply because we need `less' of Xb when we use `more' of

Xw and vice-versa. This leads to the two coe�cients having a highly negative

covariance.

See also: Lecture 3 - Linear Regression II, slide 30.

(iii) Case A.

The reasoning is similar to the previous case: because the predictors are neg-

atively correlated, lowering the contribution of one predictor leads to a higher

contribution of the other. Therefore, the coe�cient estimates will here have a

highly positive covariance.

• We leave out Case D.

This coe�cient distributions clearly does not correspond to a Gaussian, which

means that the dataset on which these estimates were made cannot have satis�ed

the OLS assumptions.

3. (a) To verify whether a linear model is the right choice, we can draw and inspect

the residuals plot: if the true relationship is non-linear it will reveal a U-like

shape.

See also: Lecture 3 - Linear Regression II, slides 21-22.
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(b) One example is when an increase in advertisement budget for medium one

a�ects (e.g. increases or decreases) the e�ectiveness of another.

For a positive e�ect, we can assume there is a synergy between the two media:

having seen an ad in one would make seeing the ad in another more plausible

or more persuasive.

For a negative e�ect, we can assume that the two media share some users,

so advertising in one already covers a part of this population, rendering

additionally showing it on another less e�ective.

(c) To test whether a predictor is contributing signi�cantly to the outcome we

can use a hypothesis test to reject the Null hypothesis that the corresponding

coe�cient is 0.
One such test is the t-test for the coe�cient of X99

bf
.

See also: Lecture 2 - Linear Regression, slide 15.

4. (a) Let β̂′ be the coe�cient for the predictor that we get from a random dataset.

Then, the statement in the box can be written as

P

(
β̂′ > β̂

∣∣∣β = 0
)
< 2.2% , (1.1)

where β is the true coe�cient.

The name of this probability is the p−value of the hypothesis test based on the

z-score to reject that the coe�cient of X is non-zero.

(b) The least squares assumptions hold and we are given the true variance of the

estimate; therefore, we can compute the z-score of this estimate, which must

follow a Gaussian distribution. This z-score is

z =
β̂ − 0

SE(β̂)
, (1.2)

where SE(β̂) =

√
Var(β̂) =

√
0.49 = 0.7. The given probability is the integral

of the right tail of the Gaussian probability density function for the part from

2σ and further to the right, as we can compute 2.1%+0.1% = 2.2%. Therefore,

we know that the z-score is equal to the value of 2.
We now plug these in equation (1.2) and we can now solve for β̂, since

β̂

SE(β̂)
= 2 ⇐⇒ β̂ = 2SE(β̂) = 2 · 0.7 = 1.4 .

See also: Lecture 2 - Linear Regression, slide 15.
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Problem 2 (Classification) (10 points)

1. A linear classi�er that uses the predictors X1, X2, X1X2, X
2
1 , and X2

2 will have a (1pt)

decision boundary that falls into one out of 5 characteristic cases. Choose 4 out of

the 5 cases, name them, and draw an example decision boundary for each.

2. In Fig. 2 we show the decision boundaries for �ve di�erent classi�cation methods. (3pts)

Pair each of the boundaries to exactly one of the following classi�cation methods and

brie�y explain each of your choices:

(i) LDA � Linear Discriminant Analysis

(ii) QDA � Quadratic Discriminant Analysis

(iii) LR � Logistic Regression

(iv) 3-NN � k-Nearest neighbours with k = 3

(v) SVC � Support Vector Classi�er (hard margin, no kernel).

Boundary A Boundary B Boundary C Boundary D Boundary E

Figure 2: Di�erent decision boundaries for the same dataset.

3. We consider the binary classi�cation problem where based on a single predictor X
we want to classify samples into one out of two classes `+' and `−'. We know that

� P (X|Y = `+') = N (0, 1) is a Gaussian with zero mean and unit variance,

� P (X|Y = `−') is uniform over the interval [−α, α] with some parameter α > 0,

� and P (Y = `+') = P (Y = `−') the classes are equally likely.

Without performing extensive computation, answer the following questions.

(a) Draw the decision boundary of the Bayes optimal classi�er for α = 2.5 on the (1pt)

real line of the graded axes in your answer booklet (page 5).

You may use rounding to 1 decimal point.

(b) Brie�y explain what happens to the decision boundary if α increases slightly. (1pt)

(c) Brie�y explain what happens to the decision boundary if the prior P (Y = `+') (1pt)

increases slightly.

You may �nd useful the Gaussian probability density function shown in Fig. 3.

Exam 5 of 23 22nd March.
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Figure 3: Probability density function of standard Gaussian N (0, 1).

4. You need to perform binary classi�cation on the dataset shown in Fig. 4 that contains

two predictors X1 and X2. You decide to use a support vector machine. For this, you

consult for advice the not-yet-famous researcher Mara Saseche.

−1.5 −1 −0.5 0.5 1

−0.5

0.5

1

1.5 class

class

Figure 4: Dataset for support vector machine classi�cation.

Exam 6 of 23 22nd March.



Elements of Machine Learning, WS 2022/2023
Aleksandar Bojchevski and Jilles Vreeken

Exam, March 22nd, 2023, Solution Sheet

(a) You ask Mara to �t a hard margin classi�er. Instead she �ts the two soft margin (1 pt)

classi�ers shown in Fig. 5. Why couldn't Mara ful�ll your request? How are the

two models di�erent?

−1 1

1

non-sup. vec.

(a) Model A

−1 1

1

non-sup. vec.

(b) Model B

Figure 5: Mara's two models. The dashed line shows the decision boundary. The background

color shows the predicted class. The `+' and `−' denote data points that are support vectors.
The black circles show data points that are not support vectors.

(b) You asked Mara for a better classi�er. She came up with a support vector (1 pt)

classi�er for which the decision boundary is shown in Fig. 6. Brie�y explain

how she achieved this decision boundary.

−1.5 −1 −0.5 0.5 1

−0.5

0.5

1

1.5

Figure 6: Support vector classi�er with an improved decision boundary.

(c) As you discuss further, Mara informs you of the following correct statement. (1 pt)

�Using an SVM with a polynomial kernel of degree 2 is equiv-

alent to using an SVM on a dataset that has been extended to

additionally include predictors X2
1 , X1X2, and X2

2 .�

Given the above, why would anyone still want to use a polynomial kernel?
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Solution.

1. Using these terms allows us to create any quadratic boundary. These boundaries can

be classi�ed based on their shape as the parabola, hyberbolas, circles and ellipses,

also including the linear boundary as a limit case.

Note: These shapes are also known as the conic sections.

(a) Hyperbola (b) Parabola (c) Circle (d) Ellipse (e) Line

2. The rationale is to understand what each method does. The correct pairings are:

(i) LDA - Boundary C

LDA �ts a Gaussian on each class, such that all share the same (co)variance,

and then linearly separates their means. Here, the red class has an outlier on

the upper left part, which largely shifts its mean upwards, thereby a�ecting the

boundary a lot.

(ii) QDA - Boundary E

QDA �ts a Gaussian on each class, such that all have their own (co)variance, and

then linearly separates their means. This means QDA has a quadratic decision

boundary. Here, due to the outlier, the variance of the red class is much higher,

which drives the method to �squeeze� the decision boundary of the blue class to

the more compact quadratically separated part.

(iii) LR - Boundary B

Logistic regression takes all points into consideration, but is not as prone to

outliers as e.g. LDA, as it weights points further from the decision boundary less

weighted. Here, it correctly detects the trend of the points near the boundary.

(iv) 3-NN - Boundary A

k-NN is a non parametric and therefore quite �exible method, and is the only

one here that can achieve this kind of non-linear and non-quadratic decision

boundary.

(v) SVC - Boundary D

Since the classes are linearly separable, the hard-margin classi�er only looks at

the support vectors. Here, these are just the four central points, which together

de�ne the perpendicular decision boundary.

3. This is a simpli�cation of Problem 2 of Assignment Sheet 2.

(a) Since the class priors are equal, we only need to compare the likelihoods.

Although not necessary, this can be shown as below:

P (Y = `+'|X) >P (Y = `−'|X) ⇐⇒ using Bayes' rule

Exam 8 of 23 22nd March.
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P (X|Y = `+')P (Y = `+')

P (X)
>
P (X|Y = `−')((((((

P (Y = `−')

P (X)
⇐⇒ equal class priors

P (X|Y = `+')((((((
P (Y = `+')

P (X)
>
P (X|Y = `−')((((((

P (Y = `−')

P (X)
⇐⇒ multiply by P (X) > 0

P (X|Y = `+') >P (X|Y = `−') .

The density of the uniform distribution is some constant c within [−2.5, 2.5]. To
�nd c we must compute the value that makes the area of the de�ned rectangle

equal to 1

c · (2.5− (−2.5)) = 1 ⇐⇒ c =
1

5
= 0.2 .

We now plot both densities one on top of the other and select the most likely

class.

−4 −3 −2 −1 1 2 3 4

0.1

0.2

0.3

0.4

Therefore, the resulting boundary is shown below.

−4 −3 −2 −1 1 2 3 4

Y = `+'Y = `+' Y = `+' Y = `−'Y = `−'

(b) If α increases slightly, the density c will become lower, and therefore, the central

region will expand.

At the same time, the support of the negative class will increase, so the outer

regions Y = `+' will move further from the origin to re�ect the increased α.

−4 −3 −2 −1 1 2 3 4

Y = `+'Y = `+' Y = `+' Y = `−'Y = `−'

(c) If the prior P (Y = `+') increases slightly, the density of the Gaussian will be

scaled up during the comparison. Although a small change will not a�ect the

outermost region, it will lead to the expansion of the innermost one.
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−4 −3 −2 −1 1 2 3 4

Y = `+'Y = `+' Y = `+' Y = `−'Y = `−'

4. (a) A hard margin classi�er requires the two classes to be linearly separable. As

this is not the case here, Mara could not provide this classi�er.

Instead, she could compute soft-margin classi�ers with di�erent budget param-

eters C, as this does not require strict linear separability. Model A has a higher

budget C than that of Model B, which we can see from the fact that it contains

many more support vectors than the latter.

(b) To achieve this boundary she used a (non-linear) kernel.

The kernel she used was the (Gaussian) radial basis, which allows the complex

boundary we see here. In contrast, the polynomial kernel in the 2 dimensions

that we have here would just give a quadratic boundary, which is much simpler

than the one we see here.

(c) Even though the two approaches are the same in theory, in practice it would

require too many resources to extend the dataset with more features and for

higher degrees. More speci�cally, with n features and a degree of d we would

need to extend our dataset to a total of nd predictors.

Instead, the polynomial kernel allows for a much more e�cient computation; for

this we only compute an inner product of the two feature vectors raised to the

power of d. This is a good example where we do not need to create the entire

feature space for the computation of the kernel.

See also Lecture 12 slides 23-24.
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Problem 3 (Trees and Forests) (10 points)

1. Consider the following dataset of two predictors X1, X2 and one target Y . (1pt)

X1 X2 Y

1 1 1

1 2 1.5

2 1 11

2 2 10.5

Construct a regression tree for the data such that each leaf contains precisely one

data point. Use the approximation (a − x)2 ≈ a2 − 2ax for x < 1 when computing

the MSE gains.

2. Consider the regression tree shown in Fig. 8a.

(a) Draw the corresponding regions and indicate the value in each region. (1pt)

(b) Consider the right-most split onX2 < 1.75 in the tree. In terms of generalization, (1pt)

under which conditions does it makes sense to have this node in the tree? What

would lead to having this node in the tree even when it does not make sense?

Now consider both regression trees shown in Fig. 8.

(c) For both pruning and constraining tree depth, explain whether it would work (3pts)

better, worse, or equally well for the left tree vs. the right tree. Based on this,

explain the shortcomings of both these approaches for constraining �exibility in

regression trees. Explain your reasoning.

X1 < 1.25

X2 < 1.75

47 33

X1 < 1.75

X2 < 1.75

40.1 40

X2 < 1.75

49.9 50

(a) Regression tree 1

X2 < 1.75

X1 < 1.75

X1 < 1.25

47 40.1

49.9

X1 < 1.75

X1 < 1.25

33 40

50

(b) Regression tree 2

Figure 8: Two equivalent regression trees.
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3. World-famous ensemble learning researchers Roav Schreund and Yobert Fapire say

that modeling data with only a single regression tree is a bad idea, and that we

should instead use an ensemble of trees.

(a) Explain how Bagging works, how Random Forests work, and how these two (1pt)

di�er from each other.

(b) Explain how Boosting works, and how it di�ers from Bagging. (1pt)

(c) Explain how variable importance is computed for a Random Forest. Can we use (1pt)

the same approach for Boosted Trees? Why (not)?

4. Not-yet-famous researcher Kavid Daltenpoth makes the following statement: (1pt)

�Bagging, Boosting, and Random Forests are all linear models�.

Give one argument or example in favor, and one example or argument against this

statement.
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Solution.

1. (a) Looking at the data, we note that the mean across all data points Y is
1+1.5+11+10.5

4 = 6. The approximate MSE using the formula given in the ex-

ercise is therefore 52+4.52

2 = 25
2 + 52−2·5·0.5

2 = 12.5− 2.5 = 10.

Considering the two splits X1 < 1.5 and X2 < 1.5, we see that the latter

produces the two groups {1, 11} and {1.5, 10.5}, both of which have a mean of 6

again. The split on X2 therefore has zero gain. In comparison, the split on X1 <
1.5 produces the groups {1, 1.5} and {10.5, 11} with means 1.25, respectively
10.75. The MSE for this split is therefore 0.252 for a gain of 10−0.252, which is

clearly much larger than 0. The second split on each branch is trivial, and the

resulting tree is given in Fig. 9

X1 < 1.5

X2 < 1.5

1 1.5

X2 < 1.5

11 10.5

Figure 9: Regression Tree.

2. (a) The resulting regions (restricted to [0, 2]2) are given by Fig. 10

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

47 40.1 49.9

33 40 50

X1

X
2

Figure 10: Resulting decision regions.

Exam 13 of 23 22nd March.



Elements of Machine Learning, WS 2022/2023
Aleksandar Bojchevski and Jilles Vreeken

Exam, March 22nd, 2023, Solution Sheet

(b) The split between values 49.9 and 50 is meaningful if there is either 1) enough of

a di�erence between the two values to justify the distinction (think of elections),

or 2) enough data to make such a split signi�cant. When neither of these two

conditions apply, however, such a split is likely due to over�tting.

(c) Both pruning and depth restriction would work better for Regression tree 1

shown in Fig. 8a. Since the tree in Fig. 8b has very di�erent values in its leaves

on the same level, trying to prune this tree would result in a large increase in

MSE and would therefore likely not work. Tree 1, however, has very similar leaf

values, pruning therefore likely to work well.

Similarly, restricting the depth would also work better for the Regression tree

1. In both trees, once we decide on the top-level split, the remaining splits

maximizing MSE gains are easily determined, and therefore restricting the depth

to 2 would lead to the same result as pruning the leaves so that the same reasons

apply.

3. (a) Bagging works by taking B independent bootstrap samples from the original

dataset and �tting a tree Tb to each of these datasets, and predicting the value

for a given value x0 by averaging the trees: ŷ0 =
∑B

b=1 Tb(x0). Since bootstrap
samples have large overlap, these trees are generally highly correlated, however.

Random Forests therefore in addition use only a random subset of p predictors

for each of the trees to reduce this correlation.

(b) Bagging works by averaging trees trained independently from one another on

di�erent datasets. In contrast, boosting �ts a sequence of models. It iteratively

�ts a new model to the data, and then changing the weights of each data point

according to its residual, i.e., how (not) well the model predicts that data point.

The newly �t model therefore tries to predict those points which are not pre-

dicted well by the previous model.

(c) The importance of a predictor for a single tree is computed as

I2l (T ) =
J−1∑
t=1

g2t I(v(t) = l) ,

where gt is the gain from the split at node t in tree T and v(t) the predictor

we split on. That is, we simply measure the total improvement in gain due to

splits on predictor l. When we have multiple trees T in a random forest, we can

simply average the gains for each of its individual trees.

For boosting, we can take precisely the same approach of averaging the gains

due to splitting on the predictor l.

4. In favor: Since bagging, boosting and random forests are simply averages over mul-

tiple trees, it su�ces to give an argument that trees can be considered as linear

models. Since every tree basically amounts to assigning di�erent (constant) ci values
to di�erent regions Ri de�ned by the tree T , we can write the prediction at a point

x0 as

T (x0) =
∑
i

ciI(x0 ∈ Ri) .
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A regression tree can therefore be considered linear regression with basis functions

I(· ∈ R) for all possible regions R that can be constructed by regression trees.

Against: The set of all possible regions is uncountably in�nite and therefore makes

it impossible to actually do such a regression. The task of determining which regions

need to be considered is precisely part of the problems that regression trees solve.
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Problem 4 (Model Selection) (10 points)

1. We are given two datasets, one of n = 10, and a second of n = 1000 samples, over

ten predictors X1, . . . , X10 and one continuous-valued target variable Y . We want to

�nd out which are the relevant predictors for Y .

(a) We �t a linear regression model using each possible subset of predictors. In (1pt)

Fig. 11, we show the BIC score of the regression model using the k best pre-

dictors. Which line corresponds to the small and which to the large dataset?

Explain.

2 3 4 5 6 7 8 9 10

1

2

3
·103

Number of predictors k

B
IC

Dataset A

Dataset B

Figure 11: BIC scores of linear regression models that use the k best predictors.

(b) Based on Fig. 11, how many predictors would you choose and why? (1pt)

(c) Explain how BIC di�ers from AIC. Based on this, does the choice between BIC (1pt)

and AIC matter more for the small or for the large dataset?

(d) Brie�y explain how we can use each of the following methods to select relevant (3pts)

predictors for Y , and give one advantage and one disadvantage:

� subset selection,

� cross validation,

� shrinkage.

2. Consider the following formulation to �nd the linear regression parameter β̂ ∈ R
d,

β̂ = arg minβ

n∑
i=1

(yi − βxi)
2 subject to ∥β∥22 ≤ K .

(a) Explain the e�ect of the constraint in the above objective. (1pt)

(b) How does the above formulation di�er from OLS in terms of the number of (1pt)

parameters and in terms of the degrees of freedom?

(c) Consider varying the value of parameter K. What would be the e�ect on the (1pt)

bias and variance of the model?
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(d) How could we modify the constraint to perform subset selection? (1pt)
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Solution.

1. (a) BIC is given by

BIC = Klogn− 2logL .

In the case of linear models, the number of parameters K corresponds simply

to the number of predictors k and does not di�er between the small and large

dataset. Due to the logarithmic term in n, BIC may be slightly larger for large

sample sizes, unless there is a large enough di�erence in the likelihood L. In our

example, we might thus decide that dataset A is the smaller one and dataset B

the larger one. Note: for more complex models than a linear one, the number of

parameters k of the best models will also depend on the dataset. For example,

for very small sample size n = 10, the models we infer from the dataset may be

misspeci�ed and contain e.g. too many parameters.

(b) We choose the model with the minimal BIC value, which here has 6 predictors.

Mind the di�erence to the cross-validation rule, where we choose the simplest

model within one standard deviation of the minimal one, or the elbow rule.

(c) AIC is given by

AIC = 2k − 2logL .

BIC and AIC di�er in the penalty they put on the model parameters. In AIC

it is independent of the sample size, and the number of datapoints does not

directly enter the AIC score. Comparing two datasets of di�erent sizes, the AIC

scores only di�er by the likelihood term and may be more similar to each other

than the BIC scores. Note: Again, we need to keep in mind that one dataset

is much too small (n = 10) to expect reasonable model parameters. Hence, for

nonlinear models with varying number of parameters k we may get too many

(or too few) parameters. Then, the data size can indirectly in�uence AIC.

(d) The three methods are related to feature selection as follows.

� Subset Selection: We consider each possible subset of predictors and

choose the one that is best under a given metric (such as the CV error).

While this gives us an exact result and does not require the speci�cation

of any hyperparameters, the approach is limited to small numbers p of pre-

dictors due to its heavy computational cost in O(2p). Note: Distinct from
stepwise selection which is a greedy approach.

� Cross Validation: This is one option for choosing the optimal set of pre-

dictors, i.e. can be used to compare the models found with best subset

or stepwise selection. We perform cross validation and choose the simplest

model within one standard error of the best one. As an advantage, cross val-

idation takes di�erent splits of the data into account to give a more robust

estimate of model performance. Besides feature selection, it is also appli-

cable to other use cases, e.g. selecting tuning parameters in regularization.

We need to set the hyperparameter k; it adds a computational overhead,

especially for large k; and it may not work well with imbalanced datasets.
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� Shrinkage Methods: We can use Lasso regularization to drive the co-

e�cients of irrelevant features to zero. As an advantage, using Lasso we

can directly remove the e�ect of irrelevant features on the model predic-

tion, without the need for postprocessing. A disadvantage is that you need

to choose a tuning parameter, that they are not necessarily applicable to

non-linear models, and may be sensitive to collinearity.

2. The formulation is

β̂ = arg minβ

n∑
i=1

(yi − βxi)
2 subject to ∥β∥22 ≤ K .

(a) This is simply a constrained formulation of ridge regression, which we have seen

in its Lagrange formulation in the lecture.

(b) Since the parameter K is a hyperparameter in the constraint and not part of

the model �tting itself, the number of parameters is the same as in OLS, β.
However, we do have a reduction in the degrees of freedom compared to OLS:

(c) Choosing a smaller K increases the regularization strength, which introduces

some bias as it restricts the degrees of freedom, but has potentially less risk of

over�tting and hence lower variance. Similarly, increasingK moves the objective

closer to OLS, lowering the bias and increasing the variance.

(d) To turn this into subset selection, we can replace ∥β∥22 by an indicator function

as follows,

β̂ = arg minβ

n∑
i=1

(yi − βxi)
2 subject to I(βj ̸= 0) ≤ K ,

where I(βj ̸= 0) is 1 when βj ̸= 0 and 0 otherwise. For each predictor Xj , we

include it in the model whenever the corresponding coe�cient βj is nonzero.

Hence, the above constraint amounts to using a subset of K predictors. Note:

Replacing the L2 norm by L0 instead would simply turn this into Lasso regres-

sion. Also, we can state the above also as a Lagrange formulation with the same

indicator function and a penalty λ for including more predictors.
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Problem 5 (Unsupervised Learning) (10 points)

1. Not-yet-famous researcher Kanis Jalofolias is still interested in cats. Looking at the

plot in Fig. 12, he is starting to suspect that not all cats are created equal and wants

to determine which cats are similar to each other.

Figure 12: A scatter plot of two di�erent predictors for di�erent cats.

(a) Explain how the k-means clustering algorithm works. Would you expect it to (1pt)

work well on the data depicted in Fig. 12? Why (not)?

(b) Kavid and Kanis both run k-means on the same data, with the same distance (1pt)

measure, and the same value for k. They get di�erent results. What happened?

2. Catvaid suggests that instead of using k-means, Kavid and Kanis should use hierar-

chical clustering.

(a) Explain how hierarchical clustering di�ers from k-means clustering. (1pt)

(b) For the three dendrograms in Fig. 13, explain which one corresponds to single, (2pts)

which one to average, and which one to complete linkage.

(a) Dendrogram A (b) Dendrogram B (c) Dendrogram C

Figure 13: Dendrogram plots for di�erent linkage methods.
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3. Unhappy with the progress in his quest to understand cats, Kanis measures the

genotype of every cat he comes across, resulting in a dataset of d = 20 000 features

(genes) and n = 10 000 samples (cats).

(a) Having gathered all this data, Kanis starts scratching his head, unsure how to (1pt)

deal with it. Explain the problem with the data set he has collected.

(b) In a discussion with Kavid, the two decide to use PCA to reduce the number of (2pts)

features. Kavid suggests they should use PCA before clustering the data, while

Kanis is insistent on clustering the data �rst and then using PCA to visualize

the resulting clusters. Give arguments both in favor and against either approach.

(c) Mara tells Kanis and Kavid that they are both wrong and should use t-SNE (2pts)

instead. Succinctly explain how t-SNE works and how it di�ers from PCA.
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Solution.

1. (a) k-means clustering tries to �nd k clusters around k cluster means such that the

sum of squared distances from each data point to its closest cluster mean is

minimized. It would not work well on this data-set because the minimization of

squared distances implicitly assumes that the data is distributed according to a

mixture spherical Gaussian distributions. However, the clusters in this data are

elongated and contain multiple outliers, violating these assumptions.

(b) Since k-means clustering starts with a random initialization of the cluster means,

two runs starting with di�erent initializations can result in very di�erent results.

2. (a) k-means clustering is a parametric method tries to �nd one (local) optimum for

clustering the data in a �xed number of k di�erent clusters. In contrast, hierar-

chical clustering is a non-parametric bottom-up method starting with clusters

on each individual data points and iteratively merges those clusters which have

the lowest distance between them, as de�ned by the linkage criterion used. In

particular, it returns (locally) optimal clusters for each value of k = 1, . . . , n.

(b) The easiest way to distinguish between the linkage methods based on the den-

drograms for the same data set is to look at the distances. In general, for any

two given clusters we have that the distances measured compare as follows:

complete linkage ≥ average linkage ≥ single linkage. As such, the order from

single to complete linkage is precisely left to right.

A di�erent way of seeing this is to look how quickly each of the plots cre-

ates larger clusters. The leftmost plot creates larger clusters relatively quickly,

whereas the rightmost plot mostly starts out by merging individual data points,

with the middle plot intermediate between the two. This corresponds precisely

to the di�erent linkage methods we argued for above: since single linkage takes

into account only the smallest distance between pairs of points in clusters, it is

very easy for it to form large clusters. In contrast, for complete linkage, taking

into account the largest distance between pairs of points, it is much more di�-

cult to form larger clusters. Average linkage is intermediate between these two

and therefore results in the intermediate dendrogram.

3. (a) The problem here is that we have only 10 000 data points for 20 000 features,

so that our data is very sparsely distributed and the curse of dimensionality is

in full e�ect.

(b) Using PCA before clustering: If the assumptions underlying PCA are ful�lled

then using it before clustering may be a good idea since most of the relevant

information would still be contained in the lower dimensional data set. In con-

trast, if the assumptions underlying PCA are not ful�lled, then no matter how

good our clustering algorithm may be, we cannot expect any good results to

come of using it on the output of PCA.

Using PCA after clustering: As noted above, if the assumptions behind PCA

are faulty then no matter the clustering algorithm we will not get good re-

sults. By clustering �rst and using PCA after, we avoid this potential problem.
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However, if the PCA assumptions are satis�ed then clustering �rst and us-

ing PCA afterwards then we are obtaining potentially suboptimal clusters by

clustering in an extremely high-dimensional space when clustering in the much

lower-dimensional space would have su�ced.

(c) t-SNE takes a matrix of pair-wise distances dij between points in high-

dimensional space and tries to �nd an embedding in a lower-dimensional space

with pairwise distances qij which minimizes the di�erence between the distances

dij and qij by minimizing the KL divergence between the two.

The main di�erences are that PCA is linear and t-SNE is not, and furthermore

PCA �ts one global model to the data while t-SNE tries to maintain local

distances.
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