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Hyperplanes
 in p-dimensional vector space, a linear hyperplane

is a (𝑝𝑝– 1)-dimensional subspace

 equivalently, a linear hyperplane 
is the set of points that satisfy a linear equation 
of the form 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝 = 0

 an affine hyperplane is the set of points that fulfills
𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝 = 0 for some 𝛽𝛽0 ≠ 0

 a hyperplane divides the vector space into two half spaces

 the vector (𝛽𝛽1, … ,𝛽𝛽𝑝𝑝) is the normal vector of the hyperplane
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half space 1+2X1+3X2>0

half space 1+2X1+3X2<0

normal vector ½(2, 3)

unit normal vector
(2, 3)/||(2,3)||2

f(X)=1

f(X)=-1

Example hyperplane 
𝑓𝑓(𝑋𝑋) = 1 + 2𝑋𝑋1 + 3𝑋𝑋2 = 0



Classification using Separating Hyperplanes

 assume a data matrix 𝑥𝑥1 =
𝑥𝑥11
⋮
𝑥𝑥1𝑝𝑝

, … , 𝑥𝑥𝑛𝑛 =
𝑥𝑥𝑛𝑛𝑛
⋮
𝑥𝑥𝑛𝑛𝑛𝑛

for a binary classification problem with classes {1,−1}

 assume further a test vector 𝑥𝑥∗ = 𝑥𝑥1∗, … , 𝑥𝑥𝑝𝑝∗
𝑇𝑇

We define a classifier based on a separating hyperplane
 the data points of the two classes locate in separate half spaces
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different separating hyperplanes



Classification using Separating Hyperplanes

 assume a data matrix 𝑥𝑥1 =
𝑥𝑥11
⋮
𝑥𝑥1𝑝𝑝

, … , 𝑥𝑥𝑛𝑛 =
𝑥𝑥𝑛𝑛𝑛
⋮
𝑥𝑥𝑛𝑛𝑛𝑛

for a binary classification problem with classes {1,−1}

 assume further a test vector 𝑥𝑥∗ = 𝑥𝑥1∗, … , 𝑥𝑥𝑝𝑝∗
𝑇𝑇

We define a classifier based on a separating hyperplane
 the data points of the two classes locate in separate half spaces
 the hyperplane is defined by 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝 = 0
 the classification is sign 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝

 the distance of a point from the hyperplane is informative 
about the confidence in the classification
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The Maximal Margin Classifier

 a hyperplane that maximizes the distance of the closest 
point in the training set to it can be considered optimal
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The Maximal Margin Classifier

 a hyperplane that maximizes the distance of the closest 
point in the training set to it can be considered optimal

 this distance is called the margin

The closest data points are called the support vectors
 only they determine the hyperplane
 can be a small subset of all points
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Constructing the Maximal Margin Classifier

The optimization problem is
max

𝛽𝛽0,𝛽𝛽1,…𝛽𝛽𝑝𝑝,𝑀𝑀
𝑀𝑀

subject to ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗2 = 1

𝑦𝑦𝑖𝑖 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑀𝑀, 𝑖𝑖 = 1, … ,𝑛𝑛

 since the normal is a unit vector, the distance of point 𝑖𝑖 from 
the hyperplane is given by 𝑦𝑦𝑖𝑖(𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖)

 solve the problem with convex optimization techniques

 often, there is no separating hyperplane
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correct classification, if M>0

normal vector is unit vector
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Constructing the Maximal Margin Classifier

The optimization problem is
max

𝛽𝛽0,𝛽𝛽1,…𝛽𝛽𝑝𝑝,𝑀𝑀
𝑀𝑀

subject to ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗2 = 1

𝑦𝑦𝑖𝑖 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑀𝑀, 𝑖𝑖 = 1, … ,𝑛𝑛

 since the normal is a unit vector, the distance of point 𝑖𝑖 from 
the hyperplane is given by 𝑦𝑦𝑖𝑖(𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖)

 solve the problem with convex optimization techniques

 often, there is no separating hyperplane
 then we have to generalize to allow for misclassifications
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correct classification, if M>0

normal vector is unit vector

a non-separable dataset



The Support Vector Classifier

Even if the dataset is separable, a separating 
hyperplane may not be desirable

(ISLR 9.2.1)XII 9

a nicely separable dataset



The Support Vector Classifier

Even if the dataset is separable, a separating 
hyperplane may not be desirable
 adding a single data point leads to a hard-to-separate dataset
 the classifier is extremely sensitive to changes in the data

Sometimes it may be preferable to have a classifier 
that  misplaces a few points in the training set but has 
a large margin to the other data points
 greater robustness w.r.t to small changes in the data
 better classification of most of the training points
 the soft-margin classifier does exactly this

(ISLR 9.2.1)XII 10

a nicely separable dataset 
with an outlier



The Support Vector Classifier

Even if the dataset is separable, a separating 
hyperplane may not be desirable
 adding a single data point leads to a hard-to-separate dataset
 the classifier is extremely sensitive to changes in the data

Sometimes it may be preferable to have a classifier 
that  misplaces a few points in the training set but has 
a large margin to the other data points
 greater robustness w.r.t to small changes in the data
 better classification of most of the training points
 the soft-margin classifier does exactly this
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The Support Vector Classifier

Even if the dataset is separable, a separating 
hyperplane may not be desirable
 adding a single data point leads to a hard-to-separate dataset
 the classifier is extremely sensitive to changes in the data

Sometimes it may be preferable to have a classifier 
that  misplaces a few points in the training set but has 
a large margin to the other data points
 greater robustness w.r.t to small changes in the data
 better classification of most of the training points
 the soft-margin classifier does exactly this
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soft-margin classifier



Even if the dataset is separable, a separating 
hyperplane may not be desirable
 adding a single data point leads to a hard-to-separate dataset
 the classifier is extremely sensitive to changes in the data

Sometimes it may be preferable to have a classifier 
that  misplaces a few points in the training set but has 
a large margin to the other data points
 greater robustness w.r.t to small changes in the data
 better classification of most of the training points
 the soft-margin classifier does exactly this

 points can be on the wrong side of the margin (misplaced but correct) or the hyperplane (misclassified)

The Support Vector Classifier

(ISLR 9.2.1)XII 13

misclassified points
(wrong side of hyperplane)
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Details of Soft-Margin Support Vector Classifier

The optimization problem is now
max

𝛽𝛽0,𝛽𝛽1,…𝛽𝛽𝑝𝑝,𝑀𝑀
𝑀𝑀

subject to ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗2 = 1

𝑦𝑦𝑖𝑖 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑀𝑀 1 − 𝜖𝜖𝑖𝑖
𝜖𝜖𝑖𝑖 ≥ 0,∑𝑖𝑖=1𝑛𝑛 𝜖𝜖𝑖𝑖 ≤ 𝐶𝐶

The following holds if we also choose the smallest possible 𝜖𝜖𝑖𝑖 :
 𝜖𝜖𝑖𝑖 = 0 ⇒ the observation is on the correct side of the margin
 𝜖𝜖𝑖𝑖 > 0 ⇒ the observation is on the wrong side of the margin
 𝜖𝜖𝑖𝑖 > 1 ⇒ the observation is on the wrong side of the hyperplane
 furthermore: no more than C observations can be on the wrong 

side of the hyperplane
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Budget for total admissible misclassification

Slack variables allow for a fractional 
violation of the hard margin constraint

soft-margin classifier
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On the Effect of the Budget 𝐶𝐶

The optimization problem is now
max

𝛽𝛽0,𝛽𝛽1,…𝛽𝛽𝑝𝑝,𝑀𝑀
𝑀𝑀

subject to ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗2 = 1

𝑦𝑦𝑖𝑖 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑀𝑀 1 − 𝜖𝜖𝑖𝑖
𝜖𝜖𝑖𝑖 ≥ 0,∑𝑖𝑖=1𝑛𝑛 𝜖𝜖𝑖𝑖 ≤ 𝐶𝐶

As 𝐶𝐶 increases, we become more tolerant to violations

(ISLR 9.2.2)XII 15

large C



On the Effect of the Budget 𝐶𝐶

The optimization problem is now
max

𝛽𝛽0,𝛽𝛽1,…𝛽𝛽𝑝𝑝,𝑀𝑀
𝑀𝑀

subject to ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗2 = 1

𝑦𝑦𝑖𝑖 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑀𝑀 1 − 𝜖𝜖𝑖𝑖
𝜖𝜖𝑖𝑖 ≥ 0,∑𝑖𝑖=1𝑛𝑛 𝜖𝜖𝑖𝑖 ≤ 𝐶𝐶

As 𝐶𝐶 increases, we become more tolerant to violations

(ISLR 9.2.2)XII 16

smaller C



On the Effect of the Budget 𝐶𝐶

The optimization problem is now
max

𝛽𝛽0,𝛽𝛽1,…𝛽𝛽𝑝𝑝,𝑀𝑀
𝑀𝑀

subject to ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗2 = 1

𝑦𝑦𝑖𝑖 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑀𝑀 1 − 𝜖𝜖𝑖𝑖
𝜖𝜖𝑖𝑖 ≥ 0,∑𝑖𝑖=1𝑛𝑛 𝜖𝜖𝑖𝑖 ≤ 𝐶𝐶

As 𝐶𝐶 increases, we become more tolerant to violations

(ISLR 9.2.2)XII 17

even smaller C



On the Effect of the Budget 𝐶𝐶

The optimization problem is now
max

𝛽𝛽0,𝛽𝛽1,…𝛽𝛽𝑝𝑝,𝑀𝑀
𝑀𝑀

subject to ∑𝑗𝑗=1
𝑝𝑝 𝛽𝛽𝑗𝑗2 = 1

𝑦𝑦𝑖𝑖 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + 𝛽𝛽2𝑥𝑥𝑖𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 𝑀𝑀 1 − 𝜖𝜖𝑖𝑖
𝜖𝜖𝑖𝑖 ≥ 0,∑𝑖𝑖=1𝑛𝑛 𝜖𝜖𝑖𝑖 ≤ 𝐶𝐶

As 𝐶𝐶 increases, we become more tolerant to violations
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very small C



The Margin and the Support Vectors

We choose 𝐶𝐶 via cross-validation

For the soft-margin classifier support vectors all either lie 
exactly on the margin or on the wrong side of the margin
 intuition: only changing those points affects the hyperplane
 𝐶𝐶 controls the bias-variance tradeoff
 with large 𝐶𝐶 the margin is wide and there are many support vectors

 low variance and potentially high bias
 with small 𝐶𝐶 the margin is thin and there are a few support vectors

 high variance and small bias

The fact that correctly classified points far away from 
the hyperplane do not affect the classifier is a property 
of the support-vector classifier

XII 19

as 𝐶𝐶 decreases we become
less tolerant to violations



Nonlinear Decision Boundaries

Sometimes, data is inherently nonlinear
 then there is no soft margin that will do the trick
 we need a nonlinear version of support vector machines
 we could add nonlinear features to the feature space, e.g.

𝑋𝑋1,𝑋𝑋12,𝑋𝑋2,𝑋𝑋22, … ,𝑋𝑋𝑝𝑝,𝑋𝑋𝑝𝑝2 instead of 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑝𝑝
 the resulting optimization program would become

max
𝛽𝛽0,𝛽𝛽11,𝛽𝛽12,…𝛽𝛽𝑝𝑝𝑝,𝛽𝛽𝑝𝑝𝑝,𝜖𝜖1,…,𝜖𝜖𝑛𝑛 ,𝑀𝑀

𝑀𝑀

subject to 𝜖𝜖𝑖𝑖 ≥ 0,∑𝑖𝑖=1𝑛𝑛 𝜖𝜖𝑖𝑖 ≤ 𝐶𝐶, ∑𝑗𝑗=1
𝑝𝑝 ∑𝑘𝑘=12 𝛽𝛽𝑗𝑗𝑗𝑗2 = 1

𝑦𝑦𝑖𝑖 𝛽𝛽0 + ∑𝑗𝑗
𝑝𝑝 𝛽𝛽𝑗𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖 + ∑𝑗𝑗=1

𝑝𝑝 𝛽𝛽𝑗𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖2 ≥ 𝑀𝑀 1 − 𝜖𝜖𝑖𝑖 , 𝑖𝑖 = 1, …𝑛𝑛

 we could add higher-order, interaction terms,
or use functions other than polynomials

(ISLR 9.3.1)XII 20

the true boundary is non-linear



The Kernel Trick

With support vectors machines (SVMs) there is a different very elegant trick – the kernel trick
 builds on the optimization procedure for SVMs, which we will not detail
 it suffices to say that the linear support vector classifier can be rewritten as 𝑓𝑓 𝑥𝑥∗ = 𝛽𝛽0 + ∑𝑖𝑖=1𝑛𝑛 𝛼𝛼𝑖𝑖 𝑥𝑥∗,𝑥𝑥𝑖𝑖
 𝑥𝑥∗,𝑥𝑥𝑖𝑖 = ∑𝑗𝑗=1

𝑝𝑝 𝑥𝑥𝑗𝑗∗𝑥𝑥𝑖𝑖𝑖𝑖 is the inner product, 
 and the 𝛼𝛼𝑖𝑖 are parameters that result from the training

Important: Only the 𝛼𝛼𝑖𝑖 for the support vectors are nonzero 𝑓𝑓 𝑥𝑥∗ = 𝛽𝛽0 + ∑𝑖𝑖∈𝑆𝑆 𝛼𝛼𝑖𝑖 𝑥𝑥∗, 𝑥𝑥𝑖𝑖

(ISLR 9.3.2)XII 21

set of support vectors



The Kernel Trick

Only the 𝛼𝛼𝑖𝑖 for the support vectors are nonzero 𝑓𝑓 𝑥𝑥∗ = 𝛽𝛽0 + ∑𝑖𝑖∈𝑆𝑆 𝛼𝛼𝑖𝑖 𝑥𝑥∗, 𝑥𝑥𝑖𝑖

 to calculate 𝛼𝛼𝑖𝑖 and 𝛽𝛽0 we only need 𝑛𝑛(𝑛𝑛−1)
2

inner products 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖′ between all pairs of training points
 the actual coordinates of the training observations or the test point are never needed!

We can generalize inner products to (nonlinear) kernels 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖′)
 a kernels quantifies the similarity between two data points
 a simple linear kernel is 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖′ = 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖′
 it quantifies similarity in terms of the standard (Pearson) correlation

(ISLR 9.3.2)XII 22



Nonlinear Kernels

Two popular choices:
 The polynomial kernel with degree 𝑑𝑑

𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖′ = 1 + ∑𝑗𝑗=1
𝑝𝑝 𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖′𝑗𝑗

𝑑𝑑

 The radial-basis kernel
𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖′ = exp −𝛾𝛾∑𝑗𝑗=1

𝑝𝑝 𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖′𝑗𝑗
2

 in general, a kernel is any symmetric and 
positive definite function1 of its two arguments

A VERY important theorem says that for 
any kernel 𝐾𝐾 there is a  function Φ:ℝ𝑝𝑝 → Ψ
such that 𝐾𝐾 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 = Φ(𝑥𝑥𝑖𝑖),Φ(𝑥𝑥𝑗𝑗)

1) i.e. for any non-zero real vector (𝑐𝑐, … , 𝑐𝑐𝑁𝑁) we have ∑𝑖𝑖=1𝑁𝑁 ∑𝑗𝑗=1𝑁𝑁 𝑐𝑐𝑖𝑖𝑐𝑐𝑗𝑗𝐾𝐾(𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗) > 0 (ISLR 9.3.2)XII 23
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Reproducing Kernel Hilbert Space (RKHS)

Applying the kernel actually means performing an 
inner product in some space Ψ, the so-called RKHS
 neither Φ nor Ψ generally can (or need) be 

constructed in a computationally usable form
 however in some cases, they can, e.g.,

for 𝑝𝑝 = 2 and the polynomial kernel with 𝑑𝑑 = 2,
we have dim Ψ = 𝑝𝑝′ = 6 and
Φ1 𝑋𝑋 = 1, Φ2 𝑋𝑋 = 2𝑋𝑋1, Φ3 𝑋𝑋 = 2𝑋𝑋2
Φ4 𝑋𝑋 = 𝑋𝑋12 , Φ5 𝑋𝑋 = 𝑋𝑋22, Φ6 𝑋𝑋 = 2𝑋𝑋1𝑋𝑋2

 for the radial basis kernel, 𝑝𝑝𝑝 is infinite1

1) Steinwart et al (2006) (ISLR 9.3.2)XII 24
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https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space


The Radial Basis Kernel

If our test point 𝑥𝑥∗ is far from the training point 𝑥𝑥𝑖𝑖 then
∑𝑗𝑗=1
𝑝𝑝 𝑥𝑥𝑗𝑗∗ − 𝑥𝑥𝑖𝑖𝑖𝑖

2 will be large, so the kernel value
exp −𝛾𝛾∑𝑗𝑗=1

𝑝𝑝 𝑥𝑥𝑗𝑗∗ − 𝑥𝑥𝑖𝑖𝑖𝑖
2 will be tiny

 thus 𝑥𝑥𝑖𝑖 will not influence the value of 𝑓𝑓(𝑥𝑥∗) by much

Since the class label is based on the sign of 𝑓𝑓(𝑥𝑥∗)
the radial basis kernel thus has very local behavior
 𝛾𝛾 controls the locality
 decreasing  𝛾𝛾 increases locality

(ISLR 9.3.2)XII 25
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The Radial Basis Kernel

If our test point 𝑥𝑥∗ is far from the training point 𝑥𝑥𝑖𝑖 then
∑𝑗𝑗=1
𝑝𝑝 𝑥𝑥𝑗𝑗∗ − 𝑥𝑥𝑖𝑖𝑖𝑖

2 will be large, so the kernel value
exp −𝛾𝛾∑𝑗𝑗=1

𝑝𝑝 𝑥𝑥𝑗𝑗∗ − 𝑥𝑥𝑖𝑖𝑖𝑖
2 will be tiny

 thus 𝑥𝑥𝑖𝑖 will not influence the value of 𝑓𝑓(𝑥𝑥∗) by much

Since the class label is based on the sign of 𝑓𝑓(𝑥𝑥∗)
the radial basis kernel thus has very local behavior
 𝛾𝛾 controls the locality
 decreasing  𝛾𝛾 increases locality

(ISLR 9.3.2)XII 26

radial basis kernel



Advantages of Kernels

To calculate the SVM you only need the kernel matrix for the pairs of training points
 in contrast, enlarging the feature space is computationally expensive

Can be applied to arbitrary observations that are not vectors: graphs, strings, molecules, etc.

The kernel trick can also be used with other statistical learning methods such as LDA or PCA

(ISLR 9.3.2)XII 27



Application to the Heart Disease Data

 13 predictors are used for classification
 binary target: whether an individual has heart disease
 207 training, 90 test observations

Comparison of LDA and linear SVM
 use a threshold on 𝑓𝑓(𝑥𝑥) to parameterize SVM
 use a threshold on the linear discriminant to parameterize LDA
 similar performance on the training data

(ISLR 9.3.3)XII 28

ROC curve for classification performance
on the Heart dataset – training data



Application to the Heart Disease Data

 13 predictors are used for classification
 binary target: whether an individual has heart disease
 207 training, 90 test observations

Comparison of LDA and linear SVM
 use a threshold on 𝑓𝑓(𝑥𝑥) to parameterize SVM
 use a threshold on the linear discriminant to parameterize LDA
 similar performance on the training data

 SVM outperforms LDA on the test set – generalizes better

(ISLR 9.3.3)XII 29
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Application to the Heart Disease Data

 13 predictors are used for classification
 binary target: whether an individual has heart disease
 207 training, 90 test observations

Comparison of linear and nonlinear (radial basis kernel)
support vector classifiers
 𝛾𝛾 = 10−1 is best on the training set 

(ISLR 9.3.3)XII 30
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Application to the Heart Disease Data

 13 predictors are used for classification
 binary target: whether an individual has heart disease
 207 training, 90 test observations

Comparison of linear and nonlinear (radial basis kernel)
support vector classifiers
 𝛾𝛾 = 10−1 is best on the training set

 𝛾𝛾 = 10−1 is worst on the training set
 this amounts to a very local kernel which incurs high variance
 other nonlinear kernels perform comparably with the linear kernel

(ISLR 9.3.3)XII 31
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Relationship to Logistic Regression

The SVM optimization problem can be rewritten as
min

𝛽𝛽0,𝛽𝛽1,…,𝛽𝛽𝑝𝑝
∑𝑖𝑖=1𝑛𝑛 max 0,1 − 𝑦𝑦𝑖𝑖𝑓𝑓 𝑥𝑥𝑖𝑖 + + 𝜆𝜆∑𝑗𝑗=1

𝑝𝑝 𝛽𝛽𝑗𝑗2

 this has a general form of a regularized regression
min

𝛽𝛽0,𝛽𝛽1,…,𝛽𝛽𝑝𝑝
{𝐿𝐿(𝐗𝐗,𝐲𝐲 ,𝛽𝛽) + 𝜆𝜆𝜆𝜆 𝛽𝛽 } with loss 𝐿𝐿 and penalty 𝑃𝑃

SVM uses the same penalty as in ridge regression,
but a different loss function, called hinge loss
 similar to that used in logistic regression, thus both classifiers often give similar results
 with better separation, SVM is better, with more overlap logistic regression tends to be better

The budget 𝐶𝐶 for margin violations is inversely proportional to the penalty parameter 𝜆𝜆

(ISLR 9.5)XII 32

margin for 𝑖𝑖-th
observation

𝑦𝑦𝑖𝑖 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖)

= log 1 + 𝑒𝑒−𝑦𝑦1 𝑓𝑓 𝑥𝑥𝑖𝑖



Posterior Probabilities from SVMs

Turning SVM output into ROC curves
 compute posterior probability of the input belonging

to class 0 and 1 respectively using the formula
𝑃𝑃 𝑦𝑦 = 1 𝑥𝑥 = 1

1+exp 𝐴𝐴𝐴𝐴 𝑥𝑥 +𝐵𝐵
where 𝑓𝑓(𝑥𝑥) is the SVM output

 𝐴𝐴 and 𝐵𝐵 are parameters that are trained discriminatively

The original distributions are not Gaussian and ragged
 but, logistic fit works well

(Platt, J. C. (1999). In Advances in Large Margin Classifiers. A. J. Smola et al., eds., MIT Press: 61-74.)XII 33

𝑃𝑃(𝑌𝑌 = 1|𝑓𝑓)

𝑃𝑃(𝑓𝑓|𝑌𝑌 = ±1)



Multiclass classification

Standard SVM cannot handle multiple classes. We show strategies to address the issue.
 they can be generally applied anytime a binary classifier is the only option

One-vs-rest: Train 𝐾𝐾 SVM models for 𝐾𝐾 classes, where each SVM is being trained for 
classification of one class against all the remaining ones.
 winner is then the class, where the distance from the hyperplane is maximal

One-vs-one: train 𝐾𝐾
2 classifiers (all possible pairings) and evaluate all

 winner is the class with the majority vote
 votes can be weighted according to the distance from the margin

One-class SVM: an unsupervised algorithm to learn a decision function for novelty detection

XII 34



Support Vector Machines for Regression

Want to fit a linear model 𝑓𝑓 𝑥𝑥 = 𝑥𝑥𝑇𝑇𝛽𝛽 + 𝛽𝛽0 such that all data points lie inside a margin 
of width 𝜖𝜖 of the regression hyperplane
 impose a square penalty on model complexity

The loss function is the 𝜖𝜖-insensitive 𝑉𝑉𝜖𝜖 𝑟𝑟
 only data points on or outside the tube change the model (this is different from classification)
 these are the support vectors
 kernels distort the tube

(Smola and Schölkopf. A Tutorial on Support Vector Regression. 1998)XII 35
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Example SVR with a Radial Basis Kernel

SVR with RBF kernel on synthetic data
 Green lines show the 𝜖𝜖-boundaries 
 Blue points represent data instance
 Marked blue points are the support vectors

The fitted model adapts well to the structure of the data

Introducing new datapoints changes the model 
only if they are outside or on the 𝜖𝜖-boundary

(Smola and Schölkopf. A Tutorial on Support Vector Regression. 1998)XII 36



Summary

The main ideas behind SVMs is to find the max-margin hyperplane that separate the data

Hard SVM requires that all training data is correctly separated by can overfit

Soft SVM allows violations of the margin up to a budget 𝐶𝐶 to get a better hyperplane overall

We can rewrite the SVM classifier only in terms of inner products – replacing those with a 
kernel is the kernel trick which allow us to efficiently introduce non-linearity
 the kernel trick is an important general idea that also applies to LDA, PCA and other models

Linear SVM is similar to logistic ridge regression but uses a hinge loss instead 

XII 37
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