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Classification Overview

In classification, we want to predict categorical outputs

Example will someone pay back their loan? yes or no?
» inputs: annual income, monthly balance, student status
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Classification Overview

In classification, we want to predict categorical outputs

Example will someone pay back their loan? yes or no?
» inputs: annual income, monthly balance, student status

More examples
» identify whether an email is a spam email
= classify which out of k diseases a patient has given symptoms

= decide whether a transaction is fraudulent based on transaction
history, location, IR DNS, etc.

» identify disease-causing mutations based on DNA sequences
from patients with and without a given disease (feature selection)
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Why not just do linear regression?

Linear regression can actually work for binary classification

0 ifgreen

= simply code Y = {1 i red




Why not just do linear regression?

Linear regression does not generalize to more than two classes

For example, which coding when we have three classes?

0 ifgreen 0 ifred 0 ifred
= Y=<1 ifred orY=<1 if blue orY=<3 if blue ?
2 ifblue 2 ifgreen 9 ifgreen

= each imposes a different ordering, and different distances between classes

A regression model tries to respect the ordering and numbers representing the classes
= unless we know that the labels are metric, we should not impose one as this introduces undue bias
= also, for more than two classes linear-regression has a problem called masking (ESL page 105)



Logistic Regression

Example Credit default data

= univariate model, e.g.
Pr(default = yes | balance)

= simple linear regression models this as
fX) = Bo+ BrX

= which leads to values outside [0,1]
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Logistic Regression

Example Credit default data

= univariate model, e.g.
Pr(default = yes | balance)

= simple linear regression models this as
fX) = Bo + B:X

= which leads to values outside [0,1]

We can map these into [0,1] using the logistic function
efX) eBotB1X
p(X) =

/ 1+ e/®) 1+ eBothiX

probability that
Y=yes=1
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Logistic Regression

Example Credit default data

= univariate model, e.g.
Pr(default = yes | balance)

= simple linear regression models this as
fX) = Bo + B X1

= which leads to values outside [0,1]

Probability Density

We can map these into [0,1] using the logistic function
ef (X eBotB1X

probability that —
14+ efX) 14 eBothiX

Y=yes=1

—> p(X) =

= not only are all values now sensible, we also have the
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odds ratio as L& = eBo+F1X | and the log-odds (logit) as log (—) = Po + P X

1-p(X)

1-pX)
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Interpreting a Logistic Model

If we increasing X by one unit, we log< p(X) ) — By + BiX
» add B, to the log-odds 11()()/

= multiply the odds by eP1 \

Effect on p(X) is non-linear - p(X)X) — gBotPiX
= if B >0, adding X increases p(X) p(
= if §; <0, adding X decreases p(X)

eBotB1X
p(X) = 1 + eBotP1X
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Estimating the Coefficients of Logistic Regression

Maximum Likelihood
= generative approach to find the model that is least surprised to see the given data
= the likelihood function to maximize is

PGyt tn | BB = | | G [ [ @ —pee

iyi=1 i:y;=0

= equivalent, but often more practical, is to maximize the log-likelihood
£(o,f) = ) logp(x)+ ) log(1—p(x)

ityi=1 i:y;=0

» equivalent, is to minimize the negative log-likelihood (NLL)

We can maximize the likelihood function using nonlinear gradient-descent (Newton-
Raphson)

» the intercept only adjusts the average of the fitted probabilities to the proportions of 1s in the data
= in each step we do linear regression, and can hence apply all types of linear model analysis we know



Example Single Continuous Predictor

Probabilities of default given balance A
—10.6513+0.0055%x1000 i R N =l
p(1000) = 7 + o-T06513+0.0055%1000 — 0-00576 23
—10.6513+0.0055x2000 E\ 3
p(2000) = 7 T o-106513+0.0055%2000 — 0->86 g3
= if we increase balance by 1 EUR, this S
» increases the log odds of defaulting by 0.0055 S
= multiplies the odds of defaulting by e%%%5% = 1.0055% 0 50 1000 1500 2000 2500
balance
T ot | st aror| e | e
intercept -10.653 0.3612 -29.5 <0.0001
balance 0.0055 0.0002 249 <0.0001



Example Single Binary Predictor

Probabilities of default given student

e—3.504—1+0.4-04-09><1

p(student = yes) = 1 + o 35041+0.40409x1 0.00431

e—3.504—1+0.4-0409><0

p(student = no) = 1 + o -35041+0.40409%0 0.00292

intercept -3.5041 0.0707 -49.55 <0.0001
student 0.4049 0.1150 3.52 0.0004



Multiple Logistic Regression

The multivariate logistic regression model is defined as

eB0+ﬁ1X+'"+Bpo

pX) \ _ : _
= log (m) = Bo+ PrX + - BpXp,  with p(X) = PPN TET 2 e e

Example predicting default based on balance, income, and student

e —10.869+0.00574x1,500+0.003x40—-0.6468X1

p(student = yes, balance = 1,500, income = 40) =7 o -1086970.00574x1,500+0003x40-06468x1 — 0-0°8

e —10.869+0.00574%1,500+0.003x40—0.6468%0

p(student = no, balance = 1,500, income = 40) = T———5aeirtrs7axt 50070 003xa0-06a68x0 — 0105

intercept -10.8690 0.4923 -22.08 <0.0001
balance 0.0057 0.0002 24.74 <0.0001
income 0.0030 0.0082 0.37 0.7115
student [yes] -0.6468 0.2362 -2.74 0.0062



Example Confounding in Logistic Regression

Why is the student coefficient :

positive in the univariate and . _;_ T

negative in the multivariate model? R | :

= confounding! ‘g g 8 : :

= students have higher balance 2 § ) I

= students default at higher balance 25 g

» for a fixed value of balance and - - :
income, a student is less likely ? , I
to default than a nonstudent! i ! H

500 1000 1500 2000 No Yes -
balance student

average default rate nonstudent
average default rate student
nonstudent

student
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Classification Discriminative vs. Generative

Output for an input x

estimate g(x) of class g(x)

the classifier returns an estimate of the
output, which discriminates between
different classes

Main idea

loss function that measures the deviation
between estimate and output,
e.g. 0-1 loss

Performance measure

Optimization problem

Minimize the loss function

_ Discriminative Generative

probability distribution {p,(x) | g € G},
pg(x) is the probability that x belongs to class g

the classifier generates the output
with some probability

(log-)likelihood of the estimator
generating the output }i-, logpg, (x)

Maximize the likelihood



Appendix
Fitting Logistic Regression Models



Fitting Logistic Regression Models +

We usually fit a logistic regression model by maximum likelihood
= log-likelihood function €(6) = Xit;logpg, (x; 6) and density function pg(x;, 6) = Pr(G =k | X = x;;6)

= for a binary problem, class coding y; = {0 : gi = 0 gives us py(x; 8) = p(x; 0) and p,(x;60) = 1 — p(x; 0)

The log-likelihood then becomes
2(B) = Z{YL logp(x;; B) + (1 —y1) log(l — p(x;; B))} Z leTxl log (1 + ef xl)}

=  where B = {8, B4, ..} and x; a vector of the input values padded with a constant term X, = 1

(ESL 4.4.7)
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Side calculation
2(B) = i{%‘ logp(x;; B) + (1 — y;) log(1 — p(x;; B))}

eB0+BIxi

= {yi log + (1 —y;)log } (definition of p(x;; B))

1+eBo+Blx; 1+eBo+Blx;

= 7 (i | Bo + BTx) — log (1 + efohi®i)| — (1 - y))log(1 + efotPix)

= 7, {yiBTx; — log (1 + eF™1)}

(loga/b = loga - logb)

(simplify)

(ESL 4.4.7)
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Fitting Logistic Regression Models

We find the B that achieves maximum likelihood by setting the derivative to zero
= this yields the score equations

da¢
(B) z (yl p(xu B)) =0

= these can be broken downtop +1 equanns that are nonlinear in B
» because the first value of x; is 1, the first equation takes the shape
n n

Z Yi = Z p(xi; B)

» the expected number of class-1 assignments is the number class-1 we observed

(ESL 4.4.7)
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Fitting Logistic Regression Models +

We can solve the score equations numerically using Newton-Raphson
-1
ﬂnew _ ﬁold B aZg(Bold) af(ﬂold)
dBIB" op
» j.e. adjust coefficients proportionally to second derivative in the opposite direction of first derivative
= repeat until convergence

2 old
aai;(aﬁ,;r) = — Y xx] p(x;; ﬁ)(l — p(x;; B)) is our old friend, the Hessian matrix!

= note that

Log-likelihood is concave

= single starting point suffices, B = 0 is fine

= typically converges, but overshooting can occur

= diagonal of the Hessian matrix contains the squared standard deviations of outputs in the training set

(ESL 4.4.7)
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Fitting Logistic Regression Models +

In matrix notation we have

it X"(y—-p) 940 _

——— = XWX
ap dBIB"
= where W is a diagonal matrix with elements wy; = —p(x;; B°'¢) (1 — p(x;; ﬁ"ld))

A single Newton-Raphson step is
prev = Bol4 — (XTWX) X7 (y — p) = X"WX)"'X"W (Xg° - Wi(y — p)) = (X"WX)"'X"Wz
z=Xp" -W'(y—p)
= alinear least-squares problem with output z weighted by diagonal matrix W

BV = arg mﬁin (z—XB)TW(z — XB)

(ESL 4.4.7)



