Elements of Machine Learning, WS 2023/2024
Jilles Vreeken and Krikamol Muandet

Classwork #1: Linear Regression
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Problem 1 (C, For Tutorials on 06.11 and 07.11). Least Squares.
Consider a simple linear regression with RSS as the error measure,

N
Z (yi — Bo — xzﬂ)z (1.1)

K2

L(507ﬁ) =

S|

for a target y and single predictor X € R".
1. Show that the minimizers of Eq.(L.1]) are given by
Bo =19 - pz,
3= i (@i = ) (yi — )
i (zi — )2

where Z,7 denote the sample means z = 2 3" | z; and § =1 3" | ;.

Hint: Find BO first and substitute it into the expression forB to obtain the above.

2. Consider the example

-1

and the map
P=X(XTX)"'xT.

(a) In a sketch, visualize the column space of X as a plane in R3.

Reminder: the column space S € R® is spanned by the column vectors X of X,
S =span(XM, X@) = {a; XD 4 6, X? | a; € R} .

(b) Add the vector y, as well as the vector y — Py to your drawing and interpret the meaning of P.
What quantity is being minimized?
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Solution.

1. To find By, we consider

oL 1
5750 = 512222 . (yz —x;f — BO)(_I)
and set it to zero,
oL
=55
OZZ(yi—mzﬂ—ﬁO)
i=1
Zﬁo = Z (yi —ziP)
i=1 i=1
n'ﬂo:Z(yi*xi/@)
i=1
Bo= S w D ows =g "
i=1 =1

Similarly, we consider

i=1
51

= 55 (= 9) — (= 2)8)
i=1

~ IS () — (- D)) - (- ()

n<

Setting this to zero, we obtain

i=1
0=2 (= 9)(wi—2)+ > (v: - 2)°8

The result is

g Zim Wi~ 9)(@i —T)
Yy (@i—z)?
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2. (a) The vectors X = [1|,X® = 0| span the plane shown below,
0 1
z
X2
Y
x@

(b) Py is the vector on our plane closest to y, and the connecting vector y — Py is perpendicular
to the plane. The OLS solution minimizes the distance |y — Pyl|.

z
x(2)
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Problem 2 (C, For Tutorials on 13.11 and 14.11). Bias and Variance.
Consider the bias and variance of a linear regression model f.

1. State the definitions of bias and variance.

2. Show that the following holds,
E (30 — f(@0))?] = E[(£(z0) = f(20))?] + Van(e) .

3. For k-Nearest Neighbor Regression (KNN), one can show that the following relationship holds,

2

k
El(yo — f(x0))?] = (f(zo) — Zf(Nz‘(ffo)))2 + % Lo?.
1=0

e

where Ny (o), ..., N (o) are the k nearest neighbors of the sample g and o2 = Var(f(x)). Conclude
from this the influence of the parameter k on bias and variance.

4. Explain the difference between reducible and irreducible error.
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For brevity, we use f = f(z0), f = f(z0) and yo = f + €.
1. We have Var(f) = E(f2) — []E(f)r and Bias(f) = E(f — f).

2. We now simplify E [(yo — f)ﬂ:

The last term is Var(e) since Var(e) = E {(e —-E [6])2} =E [¢]+ [E(e)]? and we assume E(e) = 0. The

second term equals to zero because € is independent of (f—f), so 2K {(f — f)e} =2E [(f — f)] Ele] =

0 with again the assumption E(e) = 0.
Hence,

E [(yo _ f)ﬂ —E [(f - f)ﬂ + Var(e).

3. Here, the first term is the bias which as we can see is monotonely increasing with the parameter k,
that is, the more neighbors we allow by setting the hyperparameter £ in our model, the more biased
the model will be. Conversely, the the variance in the remaining term decreases as we increase k.

4. The accuracy of a prediction Y for ground truth Y depends on two quantities, the reducible and the
irreducible error. The reducible error refers to the error resulting from the fact that a learned
model is not be a perfect estimate for the true relationship. This error can be reduced by a better
fit of the algorithm. The irreducible error refers to noise that cannot be reduced by a better fit of
the algorithm (even if it were possible to find the perfect true model). This is, because Y is also a
function of €, which, by definition, cannot be predicted using X. The irreducible noise may come
from unmeasured variables. There might be useful features in predicting Y, but if we don’t measure
them, the model cannot use them for its prediction. For example, the risk of an adverse reaction
of a drug may depend on the patient’s general feeling of well-being on the day given. Note: the
irreducible error provides an upper bound on the accuracy of our prediction for Y.
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