Bachelor- and Master Seminar CISPA Staff

Registration for this course is open until Tuesday, 26.09.2023 23:59.

News

01.12.2022

Next Seminar on 07.12.2022

Dear All,

The next seminar(s) take place on 07.12. at 14:00 (Session A) and 14:00 (Session B).


Session A: (14:00-15:30)
Divesh Kumar, Antonios Gkiokoutai, Vinay... Read more

Dear All,

The next seminar(s) take place on 07.12. at 14:00 (Session A) and 14:00 (Session B).


Session A: (14:00-15:30)
Divesh Kumar, Antonios Gkiokoutai, Vinay Tilwani

https://cispa-de.zoom.us/j/96786205841?pwd=M3FOQ3dSczRabDNLb3F1czVXVUpvdz09

Meeting-ID: 967 8620 5841
Kenncode: BT!u5=

Session B: (14:00-14:30, 15:00-15:30)
Paul Frerichs, Birk Blechschmidt

https://cispa-de.zoom.us/j/99025989421?pwd=cWJIM29LYktsbStxTXlKUStZRi9MUT09

Meeting-ID: 990 2598 9421
Kenncode: 3mZyE$


Session A:

14:00-14:30 

Speaker: Divesh Kumar
Type of Talk: Master Intro
Advisor: Dr. Mridula Singh
Title: Study of object detection in automated driving systems
Research Area: RA4 (Secure Mobile and Autonomous Systems)


Abstract:

Autonomous vehicles (AV) are adopting the use of LiDAR sensors in order to better understand their surroundings. LiDARs provide a 3D view of objects around it and are also capable of providing 360 degrees data, this makes them a good fit for use in an autonomous vehicle. In this thesis we focus on perception part of AV driving systems. Cameras have been a major part of perception system in AV driving systems but happen to be easily spoofed, thus severely impacting the safety of such systems. LiDARs use wavelengths which are invisible to human eye, however attackers are inventing newer ways to manipulate LiDARs. In this thesis we wish to study the spoofing/blinding attacks on AV driving systems using LiDAR only perception and also combination of LiDAR and Camera/other sensor-based perception.
In a LiDAR spoofing attack, the attacker can use a transmitter with same wavelength laser and with open-source knowledge regarding LiDAR, can try to spoof some points, with goal of creating an artificial object in the space or try to make a real object seem closer or farther. Recent research proves that such attacks are possible and propose counter measures like averaging measurements, using different wavelengths inside LiDAR etc. However, such techniques are expensive or reduce the frequency of data received from LiDAR.
We wish to design new attacks and correspondingly lightweight defense mechanisms for adversarial attacks on LiDARs, for prevention against the state-of-the-art attacks that exist. To prove the effectiveness of attack/defense system an end-to-end study on AV driving system like Apollo by Baidu will be conducted.

 

14:30-15:00

Speaker: Antonios Gkiokoutai
Type of talk: Bachelor Final
Advisor: Dr. -Ing Ben Stock
Title: Temporal Analysis of the Security of Browser Extension Updates
Research Area: 5

Abstract:

Browser extensions have in recent years become very popular, with thousands of downloads
across different platforms. To be able to execute their tasks and improve user experience on
the web, they require access to special APIs. Example APIs include accessing the users
browsing history, or sending / intercepting network requests. Because of the nature of those
APIs being very powerful, access to them is restricted through permissions, which need to be
explicitly requested in the extensions manifest.

Similarly to the mobile ecosystem, it is recommended for extensions to request only
necessary permissions as per the Principle of Least privilege, meaning only the minimum set
of permissions that they absolutely need to carry out their tasks. However, past studies have
shown that extensions often request more permissions than they need. At the same
time, many permissions are coarse-grained and provide little information about their
capabilities to the user.

While all major browser vendors claim to review updates of extensions before releasing them, a
recent study confirms that many undetected malicious extensions turned malicious after
some update. This means the review process often fails to detect insecure updates. We would like to conduct a large-scale study on the Chrome Web Store across multiple versions of existing extensions. Key questions that
we want to answer are the following:
•- How often do extensions update and what is the nature of those updates?
•- Are permissions over-requested, and if so to what extent?
•- Finally, how can we detect updates that introduce changes with direct and critial security implications in the wild? How prevalent are such updates?

 

15:00-15:30

Speaker: Vinay Tilwani

 

No information provided.

 

Session B:

14:00-14:30

Speaker: Paul Frerichs
Type of talk: Bachelor Final
Advisor: Dr. Sven Bugiel, Prof. Dr. Andreas Zeller
Title: Local biometric prompt phishing on android devices
Research Area: 4


Abstract:
Mobile devices are treasure troves of critical data, making them an attractive target for attacks.
Even the implementation of hardware and software-based countermeasures by the manufacturers to protect the users and their data cannot prevent this.
Against malware impersonating the user, the device's integrity can only be guaranteed through user authentication.
Biometric authentication appears to be an answer to this problem.
Since this form of authentication is perceived as easy to use and secure, it seems optimal for mobile devices.
On the Android platform, biometric authentication is specially protected, and its integrity is still granted even if the OS is corrupted.
This circumstance makes it difficult for potential attackers to access resources secured by biometric authentication.
An attacker must therefore find a way to bypass the authentication.
Phishing is a possible option.
So the question is whether it is possible to carry out successful phishing attacks on biometric authentication.
To answer this question, we decided to test the chances of success of different phishing strategies against users in their typical environment, i.e., on their own device.
To avoid confirmation bias, we decided to design a deception study.
Participants are led to believe they are taking part in a study that examines their stress and mood levels in relation to physical activity and smartphone use.
At the beginning of the study, they have to install an app on their device.
This app will then simulate phishing attacks during the course of the study.

 

15:00-15:30

Speaker: Birk Blechschmidt
Type of talk: Master Final
Advisor: Dr.-Ing. Ben Stock
Title: Extended Hell: A Study on the Current Support of Email Confidentiality and Integrity
Research Area: RA5

Abstract:
The core specifications of electronic mail as used today date back as early as the 1970s. At that time, security did not play a major role in the development of communication protocols. These shortcomings still manifest itself today in the prevalence of phishing and the reliance on opportunistic encryption. Besides STARTTLS, various mechanisms such as SPF, DKIM, DMARC, DANE and MTA-STS have been proposed. However, related work has shown that they are not supported by all providers or that misconfiguration is common.

This thesis aims to provide an overview on the current state of email confidentiality and integrity measures and the effectiveness of their deployment. In particular, we investigate the support of security mechanisms by popular email providers, thereby validating and extending previous work. Since MTA-STS has not yet been widely studied, we contribute an overview on the outbound support of MTA-STS. Furthermore, we find a lower bound of domains supporting DANE bindings for OpenPGP as well as DNSSEC-associated S/MIME certificates and measure their key strength.

18.11.2022

Next Seminar on 23.11.2022

Dear All,

The next seminar(s) take place on 23.11. at 14:00 (Session A) and 14:00 (Session B).


Session A: (14:00-15:00)
Christian Schumacher, Fabian Thomas

https://cispa-de.zoom.us/j/96786205841?pwd=M3FOQ3dSczRabDNLb3F1czVXVUpvdz09

Meeting-ID: 967... Read more

Dear All,

The next seminar(s) take place on 23.11. at 14:00 (Session A) and 14:00 (Session B).


Session A: (14:00-15:00)
Christian Schumacher, Fabian Thomas

https://cispa-de.zoom.us/j/96786205841?pwd=M3FOQ3dSczRabDNLb3F1czVXVUpvdz09

Meeting-ID: 967 8620 5841
Kenncode: BT!u5=

Session B: (14:00-15:30)
Paul Krappen, Ryan Aurelio, Metodi Mitkov

https://cispa-de.zoom.us/j/99025989421?pwd=cWJIM29LYktsbStxTXlKUStZRi9MUT09

Meeting-ID: 990 2598 9421
Kenncode: 3mZyE$


Session A:

14:00-14:30 

Speaker: Christian Schumacher
Type of talk: Bachelor Final Talk
Advisor: Dr. Nils Ole Tippenhauer, Dr. Cristian-Alexandru Staicu
Title: Security Analysis of IoT Devices and Vulnerable User Notification
Research Area: RA3

Abstract:
IoT devices are becoming more and more common in everyone's daily lives. With every new device, the chance them being wrongly configured or outdated rises. I analyzed smart home devices (predominantly security cameras and routers) and checked their currently implemented security features by inspecting their interfaces and manuals with a focus on passwords. In addition, I looked at this from a usable security standpoint to see if the manufacturers could help reduce the amount of poorly secured devices by implementing known security ideas. I looked at different solutions, investigated systematically and analyzed what they would accomplish for the respective device.

Furthermore, I address the question, "How could someone contact affected people of wrongly configured outdated or infected devices?". A security researcher would usually only have the IP address of the affected device. What are the steps one has to go through to contact the owner? Is it even possible to reach them knowing only their IP, and how have other researchers dealt with the problem of reaching people with compromised devices in the past?

 

14:30-15:00

Speaker: Fabian Thomas

No information provided.

 

Session B:

14:00-14:30

Speaker: Paul Krappen
Type of talk: Bachelor Intro
Advisor: Dr. Michael Schwarz
Title: A deterministic and fast approach to reverse engineer the DRAM addressing function
Research Area: RA3

Abstract:

When processors access DRAM, memory cells that neighbor the accessed DRAM Row leak charge.
If enough charge is leaked, this can lead to bit flips in those memory cells.
When this was discovered, DRAM manufacturers implemented a mechanism that refreshes (reads and writes back immediately) the content of DRAM rows periodically.
This is sufficient for a normal operating computer system but researchers discovered, that specific memory access patterns circumvent this mechanism and thus can still be used to cause bit flips in meṁory.
This vulnerability is called Rowhammer and for it to be exploited, knowledge of how the processor maps physical addresses to DRAM locations is required.

To determine which location in DRAM a physical address maps to, CPUs have hardcoded functions depending on the Memory configuration of the system, which is for most systems undocumented.
Knowing this function can significantly improve Rowhammer attacks.
Thus researchers have worked on reverse-engineering it.
However, most approaches are non-deterministic, require physical access to the Hardware, or work only on Intel CPUs.

We aim to develop a framework for reverse-engineering the DRAM addressing function, that is deterministic, implemented fully in software, and also works on AMD and ARMv8 Processors.
 

14:30-15:00

Speaker: Ryan Aurelio
Type of talk: Bachelor Intro
Advisor: Dr. Giancarlo Pellegrino, Andrea Mengascini
Title: Exploring the Metaverse's Privacy and Security
Research Area: RA5

Abstract: Metaverse is a virtual world that allows users to interact with each other using Virtual Reality (VR) technology. VR enables users to experience the virtual world using devices that track their body movement. Metaverse and VR have become more popular over the years, increasing the privacy and security risks in this area. One example of those risks is a malicious user who tries to listen to some private conversations of other users.

This thesis will explore possible attacks that could be applied to the metaverse platforms and see which could threaten users. First, we collect the data to determine the market of VR and find which metaverse platforms are more popular. Then, we provide possible attack ideas on these platforms and categorize them. We will try to implement these potential attack ideas and simulate each of them on the metaverse platforms. We will then see which of these attacks can be a threat to the users.

 

15:00-15:30

Speaker: Metodi Mitkov
Type of talk: Bachelor Final
Advisor: Dr. -Ing Ben Stock
Title: Pre-and Post-Login Security Inconsistencies on the Web
Research Area: 5

The Web offers immense capabilities and interactivity but constantly grows in complexity. Developers struggle to employ security policies and often take shortcuts, weakening thesite’s security in the long run. Researchers frequently find inconsistencies in the employedsecurity headers, even on popular sites.
Sites offer different security policies based on factors such as the user’s location or browser. Researchers have found that not all policies are secure, causing some users to be protected while others are not. A factor that remains to be investigated is the authenticated context. Logged-in users have access to different resources, which requires different security considerations.
We investigate the differences in security headers between pre-and post-login pages. Using our automated crawling framework, we highlight inconsistencies in the employment of security mechanisms. We study popular sites and show several issues between pre-and post-login security headers. While these inconsistencies do not translate to a vulnerability directly, they weaken the sites’ ability to protect users against attacks on the Web.

02.11.2022

No next Seminar on 9.11.

Dear all,

next wednesday, there will be no seminar as there are no talks to be held.

Enjoy your free time:)

Best, Philip

19.10.2022

Next Seminar on 26.10.2022

 

Dear All,

The next seminar(s) take place on 26.10. at 14:00 (Session A) and 15:00 (Session B).


Session A: (14:00-15:30)
Tim Recktenwald, Ulysse Planta, Rayhanul Islam... Read more

 

Dear All,

The next seminar(s) take place on 26.10. at 14:00 (Session A) and 15:00 (Session B).


Session A: (14:00-15:30)
Tim Recktenwald, Ulysse Planta, Rayhanul Islam Rumel

https://cispa-de.zoom.us/j/96786205841?pwd=M3FOQ3dSczRabDNLb3F1czVXVUpvdz09

Meeting-ID: 967 8620 5841
Kenncode: BT!u5=

Session B: (15:00-15:30)
Yannick Ramb

https://cispa-de.zoom.us/j/99025989421?pwd=cWJIM29LYktsbStxTXlKUStZRi9MUT09

Meeting-ID: 990 2598 9421
Kenncode: 3mZyE$


Session A:

14:00-14:30 

Speaker: Tim Recktenwald
Type of talk: Bachelor Intro
Advisor: Dr. Giancarlo Pellegrino
Title: Chikara: Combining Web Application Crawling With Forced Execution
Research Area: 5

Abstract: Due to their ease of use, web application scanners are a popular choice when it comes to securing the web. Most of them take a blackbox approach, i.e., they do not require any prior knowledge about the tested application. To this end, blackbox scanners generally include a crawler to explore the states of a web application in an automated fashion. However, crawling modern web applications is by no means a trivial task: Whereas websites used to be completely static in the early days of the Internet, the adoption of JavaScript has rendered the client-side highly dynamic and increasingly complex.

The crawling approaches proposed in previous research works may not exercise all branches in the event handler code. This poses the question whether the deployment of advanced program analysis techniques could be a viable strategy in crawling. In particular, forced execution allows to run code irrespective of branch conditions by manipulating their outcome.

Although other works illustrate the remarkable potential of forced execution in rather narrowly defined areas of web security, the technique has not yet been studied in the more general context of web application scanning. Therefore, this thesis will explore how forced execution can be meaningfully integrated into web application crawling. Secondly, we will examine whether our method improves application coverage compared to existing approaches.

 

14:30-15:00

Speaker: Ulysse Planta
Type of talk: Bachelor Final
Advisor: Michael Schwarz
Title: Frequency Side-Channels on AMD Processors
Research Area: RA3

Abstract:

Traditionally, power side channels were limited to an attack model with full physical access
and external hardware to measure the power consumption of the system under attack. With the
addition of software interfaces like RAPL, software-only power side channels became feasible.
As a reaction to this new category of attacks, CPU vendors lowered the precision of reported energy
consumption and operating systems restricted access to energy measuring interfaces to
privileged programs only. Because modern processors continuously vary their operating
frequency depending on the workload, temperature, and energy constraints, we can draw a
conclusion about the type of workload solely from the frequency that the processor is operating at.
Using the RDPRU instruction introduced by AMD with its Zen 2 microarchitecture, an unprivileged
attacker can access two different processor internal registers, yielding a primitive, that allows for
frequency measurements with previously unreachable temporal resolution.

We investigate the resulting side channel on recent AMD processors to see what an attacker can
infer from frequency measurements on these processors and how these attacks can be mitigated.
In this talk we discuss the results of experiments and present the case studies performed.

 

 

15:00-15:30

Speaker: Rayhanul Islam Rumel
Type of talk: Master Final
Advisor: Prof. Yang Zhang
Title: Linking Attack Against Machine Learning Models
Research Area: RA1

Abstract: Popular internet services such as image and voice recognition, online video sharing, social media, and natural language translation use machine learning as part of their
services. Many popular companies e.g. Facebook, YouTube, Google use machine learning internally to improve marketing and advertising, offer products and services to customers, and
better understand the data generated by their business operations. Machine learning models can be considered confidential due to sensitive training data, economic value, or use in
security applications. Confidential ML models are increasingly provided with publicly available query interfaces.

On the other hand, big corporations have already begun to merge. Meta Inc., for example, currently owns Facebook, Instagram, and WhatsApp. However, these businesses are not
permitted to freely exchange their user data with one another to improve their own services. WhatsApp, for example, has signed an agreement indicating that it would not share any
EU user data with Facebook and will only transfer data in compliance with the General Data Protection Regulation (GDPR).

Taking all of these considerations into account, we develop a method on which we conduct linking attack for determining whether or not various machine learning models are using the
same data. The attacker's goal in linking attacks is to characterize sensitive information about a group of individuals using a specific dataset. In our case, we aim to learn
whether the models are using the same train set using a probe set. The study computes the area under the curve (AUC) to determine whether or not two models use a similar
train set. If the AUC is close to one, we may assume that these models used similar train sets. We can presume that two models used similar train sets if the AUC is close to one.
In each experiment, we train the target models (ML models that are being compared with the base model) and our base model (a model with which we compare the target models)
using data from the same distribution. We considered the ml models ResNet 18, MobileNet V2, and VGG16 along with the datasets MNIST and Cifar10 to conduct a
total of 12 experiments. Since we are using train data from the same distribution to train all of our ML models in an experiment, we anticipate a high AUC score. It’s interesting
that we had high AUC values in every experiment, and they were all quite near to one.

 

Session B:

15:00-15:30

Speaker: Yannick Ramb
Type of talk: Master Intro
Advisor: Prof. Dr. Thorsten Holz
Title: TDVFuzz - Fuzzing Intel's Trust Domain Virtual Firmware
Research Area: 3

Abstract:
With the rapid digital transformation and the dramatic rise of cloud computing over the
last decade, more and more businesses utilize cloud services to outsource their own
data and services. Despite the many advantages of this trend, there still is one major
obstacle: one must trust the Cloud Service Provider and its infrastructure. This is
particularly problematic for any business working with sensitive or proprietary data,
as Cloud Service Providers have technical capabilities to obtain and manipulate data
inside their virtual machines. To mitigate this situation, Intel developed Trust Domain
Extensions (TDX) - a novel set of architectural extensions for isolating guest VMs - called
Trust Domains (TD) - on a hardware level from an untrusted hypervisor and any other
non-Trust-Domain software on the platform.
Although designed with security in mind and extensively tested, TDX may contain
unexpected flaws and vulnerabilities. One component where such issues might occur
is the Trust Domain Virtual Firmware (TDVF), which is the TDX-aware pendant to
UEFI, i.e. the firmware that sets up the underlying platform and lays the foundation
for operating systems and other services to run. As such, TDVF is also a prominent
target for firmware-level attacks. To maintain the confidentiality and security of the
Trust Domain, we aim to detect unexpected issues by using a feedback-guided fuzzing
approach. To this end, we will extend the existing kAFL fuzzer framework, utilize
Intel Processor Trace for feedback acquisition and fuzz TDVF with our modified
framework.

06.10.2022

Next Seminar on 6.10.2022

Dear All,

The next seminar takes place on 12.10. at 14:30 (only Session A)


Session A: (14:30 - 15:00 && 15:00 - 15:30)
Erfan Balazadeh, Tejumade Afonja

https://cispa-de.zoom.us/j/96786205841?pwd=M3FOQ3dSczRabDNLb3F1czVXVUpvdz09

Meeting-ID: 967 8620... Read more

Dear All,

The next seminar takes place on 12.10. at 14:30 (only Session A)


Session A: (14:30 - 15:00 && 15:00 - 15:30)
Erfan Balazadeh, Tejumade Afonja

https://cispa-de.zoom.us/j/96786205841?pwd=M3FOQ3dSczRabDNLb3F1czVXVUpvdz09

Meeting-ID: 967 8620 5841
Kenncode: BT!u5=

Session B does not exist next week


Session A:

14:30-15:00 

Speaker: Erfan Balazadeh
Type of talk: Bachelor Final
Advisor: Dr. Lucjan Hanzlik
Title: Timed-Release Cryptography using a Proof-of-Stake Blockchain
Research Area: 1

Abstract: Imagine a scenario where you want to encrypt a message, but you don't want it to be able to be decrypted by the receiving party right away.
The concept of "encrypting a message to the future" is not new and has been around for many years. The proposed solutions so far, like time-lock puzzles or verifiable delay functions, for instance,
are not perfect however. They require a lot of computing power and the speed can vary drastically depending on the hardware being used.

The thesis' goal was to implement a new encryption scheme, which is efficiently computable and which gets rid of the previously mentioned solutions' weaknesses, inside of a real-world setting.
The idea is to make use of the existing Proof-of-Stake architecture in the Ethereum 2.0 consensus protocol, where so called committees vote on new blocks by using an aggregatable signature scheme named BLS. One of the implementation tasks of the thesis was to see if it is possible to listen to the unaggregated BLS signatures and the signed message, which are necessary for the encryption scheme. Once enough of these unaggregated signatures are accumulated, we can go on to decrypt the message. Basically, a receiving party can only decrypt the message once certain conditions are met that the encrypter knows will happen in a desired amount of time in the future.

This talk will present the results and the findings of the thesis.

 

15:00-15:30

Speaker: Tejumade Afonja
Type of talk: Master Final
Advisor: Prof. Dr. Mario Fritz
Title: Learning Generative Models for Tabular Data based on Small Data
Research Area: Trustworthy Information Processing

Abstract: 
Recent advances in generative modeling for images, speech, and natural language processing have also led to much interest in generative modeling for tabular data. However, tabular datasets are inherently heterogeneous and contain a mixture of numerical and categorical attributes, making them difficult to model. The current state-of-the-art tabular data generators (TDGs) have demonstrated impressive capabilities in capturing the statistical characteristics of the data, showing promising results in a few downstream machine learning tasks. However, existing results are based on large number of training instances (e.g., in tens of thousands), and are given only for specific metric, which rule out a myriad of practical scenarios where the sample size is limited and general properties beyond the specific metric are of interest. Hence, in this work, we systematically assessed the TDGs across various metrics as well as different subset sizes to better understand how these models behave in practical scenarios, specifically, the low-resource setting. To achieve this, we employ numerous existing measures that cover different aspects for the evaluation and propose two new metrics: the histogram intersection to measure the overlap between the synthetic and real data column, and the likelihood approximation to measure how likely the real data comes from the synthetic data distribution. Finally, we propose a benchmarking framework, faketrics, to comprehensively evaluate the TDGs along four axes: Utility, Joint, Column Pair, and Marginal so as to benchmark the evaluation of the models in low-resource setting.

 

27.09.2022

Winter is Coming

Dear all,

welcome to the new course for the Bachelor and Master seminar in the winter term.
Please switch to this course.

Best, Philip

Show all
 

Bachelor- and Master-Seminar

The bachelor/master seminar is a stage for all talks related to bachelor or master theses at CISPA.

The seminar is currently held bi-weekly on Wednesdays in odd-numbered calendar weeks. It takes place throughout the year, regardless of the lecture periods. You can join at any time. There are two parallel Zoom sessions from 14:00 to 15:30 with up to three talks each. The upcoming talks will be announced in the News section above.

Requirements for the course certificate

To pass the seminar, you have to

  • give an introductory talk where you present your thesis proposal

Furthermore, it is expected that you attend all talks of your own research area and participate in discussion during the time of your thesis work. You get a certificate and a grade for this course from your advisor. The advisor can contact us (bamaseminar@cispa.saarland) to check whether you meet all the passing conditions and to get a template for the certificate.

Further, you are required to hold a final talk about the results as a part of your thesis. While this talk is technically not part of the seminar but of the thesis work, you can still present it in the context of the seminar.

Attending a seminar session

Simply join one of the two parallel Zoom sessions. Choose the session with the talks you are most interested in. We welcome active participation and encourage you to ask questions and give helpful comments in the discussion after each talk.

During the seminar, we will share a link to an attendance sheet. Make sure to add your name to this document. We use these documents to track who attended which sessions.

Giving a talk in the seminar

Each talking slot is 30 minutes long. Your presentation should last about 20 minutes, so we have about 10 minutes left for discussion.

If you want to give a talk, you can book a time slot in one of the sessions. Use one of the following links for booking:

Please coordinate time and date with your advisor so that no two students of the same advisor present at the same time.

If you don't need a specific time slot, you can try to book 14:30, as some students either need the 14:00 or 15:00 slot. In rare cases, we will have to move the talks in a day, so please indicate which times you would be available. The final schedule will be announced in the News section a few days before the sessions take place.

To list your talk in the announcement, you will have to hand in some information about it, namely:

  • Speaker: Your name.
  • Type of talk: Bachelor Intro, Bachelor Final, Master Intro, or Master Final.
  • Advisor: The name of your advisor. If multiple advisors wish to attend the session, please list all of them so we can make sure that there are no collisions.
  • Title: Title of your talk.
  • Research Area: the number of your area. (In doubt check https://cispa.de/de/research or ask your advisor) The areas are the following:
    • RA1: Trustworthy Information Processing
    • RA2: Reliable Security Guarantees
    • RA3: Threat Detection and Defenses
    • RA4: Secure Mobile and Autonomous Systems
    • RA5: Empirical and Behavioural Security
  • Abstract: Abstract of your talk.

Refer to previous announcements for examples.

Please submit this information at least one week in advance (until 23:59 on the Wednesday before your talk). Upload your information as a submission to CMS (see Personal Status), preferably as a plain text file (.txt). You can find a template in the materials section.

Contact the organizers

If there are any questions left, please use the mail address bamaseminar@cispa.saarland to contact the organizers.



Privacy Policy | Legal Notice
If you encounter technical problems, please contact the administrators